
www.manaraa.com

Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

8-17-2017

Learning extreme verification latency quickly with importance Learning extreme verification latency quickly with importance

weighting: FAST COMPOSE & LEVEL_IW weighting: FAST COMPOSE & LEVEL_IW

Muhammad Umer
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Umer, Muhammad, "Learning extreme verification latency quickly with importance weighting: FAST
COMPOSE & LEVEL_IW" (2017). Theses and Dissertations. 2465.
https://rdw.rowan.edu/etd/2465

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F2465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=rdw.rowan.edu%2Fetd%2F2465&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/2465?utm_source=rdw.rowan.edu%2Fetd%2F2465&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

www.manaraa.com

LEARNING EXTREME VERIFICATION LATENCY QUICKLY WITH
IMPORTANCE WEIGHTING: FAST COMPOSE & LEVELIW

by

Muhammad Umer

A Thesis

Submitted to the
Department of Electrical & Computer Engineering

College of Engineering
In partial fulfillment of the requirement

For the degree of
Master of Science in Electrical & Computer Engineering

at
Rowan University
August 09,2017

Thesis Chair: Robi Polikar, Ph.D.

www.manaraa.com

© 2017 Muhammad Umer

www.manaraa.com

Dedication

I would like to dedicate this work to my parents and my family

www.manaraa.com

Acknowledgements

I would like to thank my advisor and mentor, Professor Robi Polikar, whose en-

thusiasm and vision in research has greatly inspired me, and whose constant guidance and

encouragement has made this work possible. I also would like to extend my gratitude to

Dr. Ravi Prakash Ramachandran and Dr. Umashangar Thayasivam for being part of my

committee and for their generous time and commitment. Special thanks to Christopher

Frederickson, who has been very helpful in paper reviews and code development. Finally,

I would like to thank my family who has always supported and encouraged me to continue

moving forward throughout my academic career.

iv

www.manaraa.com

Abstract

Muhammad Umer
LEARNING EXTREME VERIFICATION LATENCY QUICKLY WITH IMPORTANCE

WEIGHTING: FAST COMPOSE & LEVELIW

2016-2017
Robi Polikar, Ph.D.

Master of Science in Electrical & Computer Engineering

One of the more challenging real-world problems in computational intelligence is

to learn from non-stationary streaming data, also known as concept drift. Perhaps even a

more challenging version of this scenario is when – following a small set of initial labeled

data – the data stream consists of unlabeled data only. Such a scenario is typically referred

to as learning in initially labeled nonstationary environment, or simply as extreme veri-

fication latency (EVL). This thesis introduces two different algorithms to operate in this

domain. One of these algorithms is a simple modification of our prior work, COMPOSE

(COMPacted Object Sample Extraction), that allows the algorithm to work without its ex-

tremely computationally expensive core support extraction module. We call this modified

algorithm FAST COMPOSE. The other algorithm we propose that works in this setting

is based on the importance weighting domain adaptation approach. We explore impor-

tance weighting to match distributions between two consecutive time steps, and estimate

the posterior distribution of the unlabeled data using importance weighted least squares

probabilistic classifier. The estimated labels are then iteratively used as the training data

for the next time step. We call this algorithm LEVELIW, short for Learning Extreme VEr-

ification Latency with Importance Weighting. An additional important contribution of this

thesis is a comprehensive survey and comparative analysis of competing algorithms to point

out the weaknesses and strengths of different approaches from three different perspectives:

classification accuracy, computational complexity and parameter sensitivity using several

synthetic and real world datasets.

v

www.manaraa.com

Table of Contents

Abstract . v

List of Figures . viii

List of Tables . ix

Chapter 1: Introduction . 1

1.1 Motivation: Learning in Non-Stationary Environments 1

1.2 Problem Statement . 2

1.3 Scope of Thesis . 3

1.4 Research Contributions . 4

1.5 Organization of the Thesis . 5

Chapter 2: Background . 7

2.1 Concept Drift . 7

2.1.1 Single Classifier vs. Ensemble Classifier Based Approaches for

Concept Drift . 8

2.1.2 Active vs. Passive Approaches for Concept Drift 9

2.2 Domain Adaptation . 10

2.2.1 Unsupervised Domain Adaptation and Importance Weighting 12

2.2.2 Supervised Domain Adaptation . 20

2.3 Transfer Learning . 22

2.3.1 Inductive Transfer Learning . 22

2.3.2 Transductive Transfer Learning . 23

2.4 Verification Latency . 23

Chapter 3: Preliminary and Related Work . 27

3.1 Arbitrary Sub-Population Tracker Algorithm (APT) 27

vi

www.manaraa.com

Table of Contents(Continued)

3.2 Stream Classification Algorithm Guided by Clustering (SCARGC) 32

3.3 Micro-Cluster for Classification (MClassification) 36

3.4 COMPOSE.V1 (Original COMPOSE With α-Shape Construction) 39

3.5 COMPOSE.V2 (COMPOSE With Gaussian Mixture Model (GMM) or Any

Density Estimation Technique) . 42

Chapter 4: Improving Learning Concept Drift Under Extreme Verification Latency:

Learning Extreme Verification Quickly With FAST COMPOSE and With

Importance Weighting (LEVELIW) . 46

4.1 The Underlying Problems With Current Approaches 46

4.2 Learning Extreme Verification Latency Quickly: FAST COMPOSE 51

4.3 LEVELIW: Learning Extreme VErification Latency

With Importance Weighting . 53

4.3.1 Importance Weighted Least-Squares Probabilistic Classifier 55

4.3.2 LEVELIW . 61

Chapter 5: Experiments, Results and Comprehensive Analysis of Algorithms for

Learning Under Extreme Verification Latency 64

5.1 Analysis of Three Versions of COMPOSE 71

5.2 Analysis of SCARGC . 75

5.3 Analysis of MClassification . 77

5.4 Analysis of LEVELIW . 82

5.5 Analysis on two Additional Real World Datasets 85

Chapter 6: Conclusion and Future Work . 95

6.1 Summary of Future Work . 98

References . 99

vii

www.manaraa.com

List of Figures

Figure Page

Figure 1. Graphical representation of covariate shift and class imbalance 18

Figure 2. Graphical representation of verification latency 24

Figure 3. Graphical representation of extreme verification latency scenario 25

Figure 4. Block diagram and Graphical Representations of APT 31

Figure 5. Block diagram and Graphical Representations of SCARGC 34

Figure 6. Block diagram and Graphical Representations of MClassification 39

Figure 7. Block diagram and operation workflow of COMPOSE 43

Figure 8. Example depicting core support extraction procedure in COMPOSE . . . 50

Figure 9. Block diagram and graphical illustration of FAST COMPOSE 53

Figure 10. Block diagram and graphical representation of LEVELIW 62

Figure 11. Progress of drift for 1CDT, 1CHT, 2CDT, and 2CHT datasets 67

Figure 12. Three different snapshots of GEARS 2C 2D data 68

Figure 13. Three different snapshots of UG 2C 3D data 68

Figure 14. Progress of drift for 4CR, 4CRE-V2, 1Csurr, and 4CE1CF datasets 69

Figure 15. Four different snapshots of 5CVT dataset 72

Figure 16. Accuracy Comparison of COMPOSE on balanced 5CVT dataset 73

Figure 17. Classification accuracy comparison of SCARGC on 5CVT dataset 76

Figure 18. Six Snapshots of FG 2C 2D data . 78

Figure 19. Accuracy of Algorithms on FG 2C 2D data 79

Figure 20. Six Snapshots of MG 2C 2D data . 80

Figure 21. Accuracy of Algorithms on MG 2C 2D data 81

Figure 22. UG 2C 2D data for six different snapshots 83

Figure 23. Accuracy of algorithms on UG 2C 2D data 84

Figure 24. Accuracy of algorithms on real world weather data 87

Figure 25. Sample images of traffic scenes streaming from a traffic camera 87

Figure 26. Accuracy of algorithms on Traffic dataset using various batch sizes 89

viii

www.manaraa.com

List of Tables

Table Page

Table 1. Dataset descriptions . 66

Table 2. Average classification accuracy . 90

Table 3. Average execution time (in seconds) 91

Table 4. Statistical significance at α = 0.05 for classification accuracy 91

Table 5. Statistical significance at α = 0.05 for execution time 92

Table 6. Accuracy with three different values of k (SCARGC) 92

Table 7. Accuracy with three different values of r for (MClassification) 93

Table 8. Accuracy with three different values of k (COMPOSE) 93

Table 9. Accuracy with three different values of sigma (LEVELIW) 94

ix

www.manaraa.com

Chapter 1

Introduction

1.1 Motivation: Learning in Non-Stationary Environments

The fundamental goal in machine learning is to learn from data. Depending on

the availability of labeled data, machine learning can be broadly categorized into three

categories, namely supervised learning (where sufficient amount of labeled data are avail-

able for training), unsupervised learning (where only unlabeled data are available), and

semi-supervised learning (where some labeled data and some unlabeled data are available).

Most machine learning algorithm, regardless of the availability of labeled data, make a

fundamental assumption that data are drawn from a fixed but unknown distribution. This

assumption implies that test or field data come from the same distribution as the training

data. In reality, this assumption simply does not hold in many real world problems that

generate data whose underlying distributions change over time. Network intrusion, web

usage and user interest analysis, natural language processing, speech and speaker identifi-

cation, spam detection, anomaly detection, analysis of financial, climate, medical, energy

demand, or pricing data, as well as the analysis of signals from autonomous robots and

devices, brain signal analysis, and bio-informatics are just a few examples of the real world

problems where underlying distributions may – and typically do – change over time.

In machine learning, the challenge of making decisions in a changing environment

is referred to as non-stationary learning. This is a challenging problem, because the classi-

fier needs to adapt to a new concept in the changing environment, while retaining the pre-

viously acquired knowledge that is still relevant to ensure a stable learning environment,

a phenomenon commonly referred to as the stability-plasticity dilemma in literature [1].

1

www.manaraa.com

The fixed distribution assumption, essentially requiring the data to be drawn independently

from an identical distribution (also referred to as independent and identically distributed -

i.i.d.) renders traditional learning algorithms that make this assumption ineffective at best,

misleading and inaccurate at worst on non-stationary distribution problems.

1.2 Problem Statement

Concept drift techniques [2–7] and domain adaptation approaches [8, 9] have been

developed to tackle two related but different issues related to non-stationary distributions:

domain adaptation techniques are designed to handle mismatched training and test distri-

bution over a single time-step, while concept drift approaches are designed to track the

data distributions over a streaming setting. However, both approaches assume that there

is (preferably ample) labeled training data, and the potential scarcity or the high cost of

obtaining labeled data is a major obstacle faced by these approaches.

In an effort to reduce the amount of required labeled data, semi supervised learning

(SSL) approaches have also been employed, where a hypothesis is formed using modest

amount of labeled data and more abundant unlabeled data. SSL approaches, of course, also

require labeled data at each time step [10], albeit in smaller quantities. Active learning

(AL) is another approach to combat the limited availability of labeled data [11], where the

learner actively chooses which data instances – if labeled – would provide the most benefit.

The goal in AL algorithms is therefore to find the minimum number of labeled examples

that provide the maximum benefit. This is most commonly achieved by assuming that there

is an oracle or expert that can be queried for the labels of any example on demand. Active

learning approaches cannot function, however, if the requested labels cannot be provided

2

www.manaraa.com

on demand, a potentially restricting limitation.

The unavailability of labeled data, particularly in streaming applications, gives rise

to another problem, commonly referred to as verification latency in the literature [12],

where labeled data are not available at every time step. More specifically, verification

latency refers to the scenario where labels of the training data becoming available only

certain or some unspecified amount of time later, significantly complicating the learning

process. The duration of the lag in obtaining labeled data may not be known a priori,

and/or may vary with time. The extreme case of this phenomenon, aptly named as the

extreme verification latency, is perhaps the most challenging case of all machine learning

problems: labels for the training data are never available - except perhaps those provided

initially, yet the classification algorithm is asked to learn and track a drifting distribution

with no access to labeled data. This thesis explores solutions to this problem of learning

from non-stationary and streaming environments in the presence of extreme verification

latency.

1.3 Scope of Thesis

The primary goal of this thesis is to develop effective (in terms of classification

performance) and efficient (in terms of computational cost associated with the algorithm)

approaches for learning in extreme verification latency (EVL). EVL refers to the scenario

where obtaining labeled data is expensive or impractical and – perhaps beyond an initial

investment – only unlabeled data are available in all future time-steps of a non-stationary

data stream. We refered to this scenario as initially labeled non-stationary environment

(ILNSE) in our prior work [13]. The existing approaches to work in this setting include i)

3

www.manaraa.com

Arbitrary Sub-Population Tracker (APT); [14], ii) COMPacted Object Sample Extraction

(COMPOSE) [13]; iii) Stream Classification Algorithm Guided by Clustering (SCARGC)

[15]; iv) and Micro-cluster for Classification (MClassification) [16].

The specific focus of this thesis is not only to develop cost effective and time ef-

ficient approaches in this setting, but also to compare and contrast existing approaches,

determine if they can be improved through appropriate modifications. Within this setting,

we also investigate whether domain adaptation approaches – typically designed to work for

single time-step distribution mismatch problems – can be modified to work in streaming

setting, and more importantly under EVL.

1.4 Research Contributions

The primary focus of this thesis, as mentioned above, is to develop effective and

efficient approaches for learning under extreme verification latency in non-stationary envi-

ronments, and compare the performances of the small set of algorithms that are designed

to work in similar settings. The core contributions and findings of this work are as follows:

1. FAST COMPOSE is introduced as a very efficient algorithm that can work under

extreme verification latency. FAST COMPOSE is a modification of the algorithm

COMPOSE, previously developed by Dyer and Polikar [13], where its computation-

ally expensive core support extraction module is replaced by using all of the instances

labeled by the algorithm in the previous time-step.

2. We observe that importance weighting based domain adaptation approaches can be

used for streaming data concept drift problems associated with extreme verification

latency when the class conditional distributions at the consecutive time steps share

4

www.manaraa.com

support.

3. A modification of the well-known importance weighted least squares probabilistic

classifier is introduced so that it can work within a) streaming data environment

and b) when there is extreme verification latency. The proposed approach is called

Learning Extreme VErification Latency with Importance Weighting (LEVELIW).

4. One of the most important contributions of this thesis is to provide a detailed and

comprehensive comparison and analysis of competing algorithms used in extreme

verification latency setting from three different perspectives: accuracy, computa-

tional complexity, and parameter sensitivity. We find that FAST COMPOSE is the

best algorithm among others with respect to accuracy and computational complexity,

while LEVELIW is the best algorithm with respect to the parameter sensitivity.

1.5 Organization of the Thesis

Chapter 2 provides an overview and background for learning in nonstationary en-

vironments, concept drift, domain adaptation and ensemble approaches used for concept

drift. Existing approaches for learning in non-stationary environments under extreme veri-

fication latency setting are discussed in detail in Chapter 3. Chapter 4 introduces the new

algorithms developed as part of this thesis, specifically, FAST COMPOSE developed to

learn in extreme verification latency setting quickly; and LEVELIW that extends covariate

shift based domain adaptation approaches to learning under EVL. Chapter 5 presents the

experimental setup and results, comparing and analyzing competing algorithms for non-

stationary learning under extreme verification latency from three different perspectives:

accuracy, computational complexity, and parameter sensitivity. Finally, the conclusions

5

www.manaraa.com

and the suggestions for future work are discussed in Chapter 6.

6

www.manaraa.com

Chapter 2

Background

This chapter provides a comprehensive background review and technical details of

two primary areas that related to learning in non-stationary environments, namely concept

drift and domain adaptation. The general overview of these topics along with the connec-

tion and concerns with verification latency are also discussed in this chapter.

2.1 Concept Drift

Concept drift refers to the scenario where the statistical properties of the data change

over time in unforeseen ways. Concept drift is not a trivial problem because it occurs within

the streaming data which is usually unlabeled and unstructured. The drift scenarios can be

abrupt or gradual, slow or fast, random or systematic, cyclical or otherwise. Changes can

also be perceived, rather than real, due to insufficient, unknown or unobservable features -

referred to as hidden context, where an underlying unknown phenomenon provides a true

and static description over time [17],[18]. Concept drift problems typically assume at least

a gradual (or limited) drift assumption, but do not require stationary posteriors or same

support. So in concept drift we normally have pt+1(y|x) 6= pt(y|x) where pt+1(x) = pt(x)

may or may not be satisfied. IN other words, the posterior distribution of the data at time

t + 1 may be different from that at time t, while marginal distribution may or may not

remain the same as well. This scenario is also known as real drift.

Data is presented in streams to the concept drift handling algorithms in normally

two different ways: i. Online setting - where a single instance is provided to the learner at

each time-step, and the learner has to adapt to the change using this single instance; and

7

www.manaraa.com

ii. batch setting - where several instances are accumulated from the stream, which are then

presented to the learner. Online setting is normally considered to be a more challenging

learning scenario than the batch setting because less data (i.e. single instance at each time-

step) makes it difficult for the learner to adapt to the changes easily. On the other hand,

batch learners often lag in reacting to changing concepts because it is often assumed that

concept does not change within the given batch of data. Of course, the stationarity within

a batch assumption is rarely true.

Concept drift algorithms can be characterized in various ways; such as single clas-

sifier vs. ensemble-based approaches, or active vs. passive approaches.

2.1.1 Single classifier vs. Ensemble classifier based approaches for Concept

drift. Single-classifier approaches learn the drifting concept by either replacing the cur-

rent classifier with a new classifier trained on newly received data, or updating the ad-

justable parameters of a given classifier to reflect changes present in newly received data

[19],[20], [21]. Single classifier approaches are more prone to stability-plasticity dilemma:

an entirely stable learner would not be able to learn changing environment and an entirely

plastic learner would not be able to deal with catastrophic forgetting [22], i.e. it would

not be able to retain any of the previous knowledge that may still be relevant. Learning

algorithms based on single-classifier approaches strive to balance stability and plasticity.

On the other hand, ensemble based approaches use a combination of several clas-

sifiers to make a decision, hence minimizing the stability-plasticity problems, albeit at in-

creased computational cost. Ensemble approaches track the environment by adding new

classifiers with each incoming dataset to build a family of classifiers. These approaches

8

www.manaraa.com

minimize the stability-plasticity dilemma concerns by providing both stability (a subset or

all of the prior classifiers can be retained or reweighted) and plasticity (learning new in-

formation by adding new classifiers). A fixed or dynamic ensemble size may be used by

these approaches. For fixed ensemble size, either the oldest member [23], [24] or the least

contributing ensemble member is replaced with a new one as done in Dynamic Weighted

Majority (DWM) algorithm in [25]. If dynamic ensemble size is being used, additional

classifiers can be added without removing existing classifiers (though they would often

be reweighted to reduce their impact). Weighted [26] or simple majority [27] voting are

the most common approaches for combining the classifiers when an ensemble approach

is used. Abdulsalam et al.’s random forests with entropy [28], Masud et al.s concept drift

with time constraints [29], Bifets integration of a Kalman filter with Adaptive Sliding Win-

dow (ADWIN) [30], and Massive Online Analysis [31] represent ensemble approaches

that combine ensemble of classifiers and sliding window techniques. Learn++.NSE [32],

[4], and Learn++.NIE [5] represent a more modern family of approaches for mining data

streams with concept drift that do not rely on sliding window, and can dynamically deter-

mine which ensemble members are relevant at any given time.

2.1.2 Active vs. Passive approaches for Concept drift. In active approaches, the

algorithm continuously monitors the data to determine if and when change occurs. If – and

only if – a change is detected, the algorithm takes an appropriate action, such as updating

the classifier with the most recent data or simply creating a new classifier to learn the

current data, depending on the nature of the algorithm. Passive approaches, on the other

hand, do not explicitly monitor the data for change, but rather assume change may occur

9

www.manaraa.com

at any time new data become available. A passive algorithm therefore updates the model

every time new data arrive, regardless of the presence of change/drift. There are a multitude

of active drift detection approaches. Many of the earliest algorithms for concept drift were

Window based approaches, such as STAGGER [33], FLORA [17], and their variants. These

algorithms use a sliding window to choose a block of new data to train a new classifier

when change was detected and are example of active drift detection approaches. Other

approaches include statistical control charts as used in Alippi and Roveri’s just-in-time

(JIT) classifiers[34], and the more recent intersection of confidence intervals (ICI) rule

[35]. Information theoretic measures [36], Hoeffding bounds or Hellinger distance [37],

[38] are other active approaches that are based on monitoring classifier’s accuracy or some

metric to detect the change and updating the classifier.

2.2 Domain Adaptation

Domain adaptation refers to the learning scenario when the data distribution used

to train the model is different than that of the data on which the learner needs to predict.

Within the context of domain adaptation, the training data is referred to as source data,

whereas the test or field data is known as the target data, with the corresponding data dis-

tributions being referred to as source and target data distributions, respectively. Domain

adaptation problems are typically not associated with streaming data as there is only a sin-

gle time step. Examples of domain adaptation problems include, e.g., speaker identification

where the source data distribution may vary from that of the target data due to the recording

environment change, physical conditions/emotions, and session-dependent variations [39].

Another example is brain-computer interface (BCI), which allows direct communication

10

www.manaraa.com

from human brain to machine to control an external entity [40]. Electroencephalography

(EEG) is often the signal of choice in BCI applications, and EEG signals are known to

be extremely nonstationary [41]. In BCI experiments, training samples and unlabeled test

samples are usually gathered in different recording sessions, and the non-stationarity in the

brain signals can cause a change in the distributions rendering the classifier update neces-

sary in this setting. Natural language processing (NLP) is another case, where the NLP

system is trained using data collected from the target domain in which the system is oper-

ated, however, due to the difference in vocabulary and writing style, the target domain data

is often not useful to train a system, requiring some domain adaptation intervention [42].

Age prediction from face images has also been an application, where the type of camera, the

camera calibration, and lighting variations significantly influence the accuracy of age pre-

diction systems. The system is usually trained on the publicly available databases which are

mainly collected in a semi-controlled environments with appropriate illumination. How-

ever, in the real-world testing environments, lighting conditions vary considerably: there

may be either not enough light or strong light. For this reason, training and test data tend

to have different distributions [43].

The aim of domain adaptation techniques is therefore to build a hypothesis that is

robust to the changes (or drift) between training (source) and test (target) distributions. Do-

main adaptation approaches can also be characterized in several ways: Supervised domain

adaptation refers to the scenario where labeled data are available both in source and target

domains, whereas unsupervised domain adaptation typically refers to the case where both

labeled and unlabeled examples are available in the source domain, but only unlabeled

data are available in the target or test domain. The intermediate scenario where there is

11

www.manaraa.com

some, but very limited labeled data are available in the target domain, is also commonly

treated using the approaches designed for unsupervised domain adaptation, but with ideas

borrowed from semi-supervised learning.

2.2.1 Unsupervised domain adaptation and Importance weighting. Importance

weighting is perhaps the most common approach used to tackle unsupervised domain adap-

tation where no labeled examples are available in the target domain.

The essential cause of domain adaptation problem is the difference between the

joint distribution pt(x, y) of features x and labels y in the target domain and the joint distri-

bution ps(x, y) in the source domain [44]. One possible solution to this problem is to weigh

(or transform) the training instances such that their distribution behaves more like that of

the target distribution.

For classification problems, the goal is to find a good mapping function f between

inputs x and outputs y among a set of all candidate functions in the hypothesis space H .

The optimal choice f ∗ should then minimize the expected loss with respect to the true dis-

tribution p(x, y). Specifically in domain adaptation problem setting, the optimal function

f ∗t for the target domain, the one that minimizes the expected loss with respect to the target

domain is

f ∗t = argmin
f∈H

∑
(x,y)∈X×Y

pt(x, y)L(x, y, f) (2.1)

where L(x, y, f) is the loss function. Since we do not have sufficient (or any) labeled

instances in the target domain, we can not obtain a good approximation of the actual target

distribution, i.e., empirical target distribution p̃t(x, y) from the target domain instances. By

empirical distribution, we refer to the approximation of the true distribution estimated by

12

www.manaraa.com

using sufficient amount of labeled examples, i.e., (xi, yi). In domain adaptation setting we

do, of course, have access to a sufficient set of labeled instances from the source domain,

but since these instances are drawn from the source distribution ps(x, y), the empirical

distribution estimated from these instances, p̃s(x, y), can not directly help us approximate

pt(x, y). We can, however, rewrite Equation 2.1 in a different way that can indirectly help

us use labeled examples from source distribution [45].

f ∗t = argmin
f∈H

∑
(x,y)∈X×Y

pt(x, y)

ps(x, y)
ps(x, y)L(x, y, f)

≈ argmin
f∈H

∑
(x,y)∈X×Y

pt(x, y)

ps(x, y)
p̃s(x, y)L(x, y, f)

= argmin
f∈H

1

Ns

Ns∑
i=1

pt(xi, yi)

ps(xi, yi)
L(xi, yi, f)

(2.2)

where, p̃s(x, y) is the empirical source distribution estimated using sufficient (Ns) number

of labeled instances in the source domain. The expected loss value is then estimated by

calculating simple mean of the loss across source domain instances (xi, yi) weighted by

pt(xi,yi)
ps(xi,yi)

. This ratio, computed by using Ns source instances, is known as the importance

ratio. Equation 2.2 implies that importance weighting provides a good approximation and

justified solution to the domain adaptation problem through providing the estimated optimal

function value for the target domain.

There are two main lines of work in the literature [44] to compute this ratio, which

are discussed below.

2.2.1.1 Covariate shift. Shimodaira [8] introduced the term covariate shift in which

source and target distribution are related to each other by making the assumption that con-

ditional distributions of class y given the same instance x in both source and target domain

13

www.manaraa.com

are the same, while marginal distributions of x may change, i.e., ps(y|x) = pt(y|x) but

ps(x) 6= pt(x). Covariate Shift is conceptually illustrated in Figure 1(a). Under covariate

shift assumption the importance ratio can be rewritten as

pt(x, y)

ps(x, y)
=
pt(y|x)pt(x)

ps(y|x)ps(x)
=
pt(x)

ps(x)
(2.3)

In this scenario, we only need to estimate pt(x)/ps(x). Hardle et al. [46] use a non-

parametric kernel density estimation (KDE) approach with Gaussian Kernel to estimate

importance ratio by estimating two densities individually, i.e., pt(x) and ps(x), however,

they find that KDE suffers from curse of dimensionality. Therefore, KDE based approaches

are not typically reliable in high-dimensional problems. Sugiyama et al. [43] propose to

directly estimate this pt(x)/ps(x) ratio, by minimizing the Kullback Leibler divergence

between the estimated importance value and true importance value, where the estimation

of the true importance value is calculated using a linear model. Bickel et al. [47] estimate

the importance ratio directly using the probabilistic classifier. The problem of directly

estimating the importance ratio value can also be transformed into a kernel mean matching

problem (KMM) in reproducing kernel Hilbert space as done by Huang et al [48]. The key

idea of covariate shift adaptation is to use informative training samples by considering their

importance in predicting test output values. The two primary approaches for estimating the

importance ratio, i.e., kernel density estimation to individually calculate the distributions

and then estimating the importance ratio, and probabilistic technique to directly estimate

the importance ratio, are briefly discussed below:

1. Kernel Density Estimation: Kernel density estimation is a non-parametric technique

used to estimate probability density function p(x) from its i.i.d. samples {xi; i =

14

www.manaraa.com

1, ., n}. KDE can be expressed as follows for the Gaussian Kernel in d-dimensional

case

p̂(x) =
1

n(2πσ2)
d
2

n∑
k=1

kσ(x, xi) (2.4)

where kσ(x, xi) = exp(− (||x−xi||)2
2σ2) is a Gaussian Kernel, centered at instance xi.

As mentioned above, Hardle et al. proposed individually calculating the two dis-

tributions pt(x) and ps(x) using Gaussian kernel density estimation, and then use

these calculated distributions to estimate the importance ratio pt(x)/ps(x) [46]. The

performance of Gaussian kernel density estimation depends on the choice of the ker-

nel width σ, for which the authors propose the standard cross-validation procedure:

essentially they chose the value of σ that maximizes the average of the following

holdout log-likelihood probability

1

|χr|
∑
x∈χr

log p̂χr(x) (2.5)

where |χr| denotes the number of elements in the set χr. The procedure is repeated

for r = 1, 2, ..., k, where k represents the number of disjoint subsets into which the

samples xini=1 are divided. As with most cross-validation approaches, the procedure

of individually calculating the distributions is computationally very expensive and

not feasible for high dimensional problems.

2. Logistic Regression: Another approach to directly estimate importance ratio pt(x)
ps(x)

is

to use a probabilistic classifier. Bickel et al. show that importance can be expressed

in terms of the variable η, and propose to rewrite target and source distributions as

follows [47]

pt(x) = p(x|η = 1); ps(x) = p(x|η = −1) (2.6)

15

www.manaraa.com

where η is a selector variable, η = −1 means that samples are drawn from the training

distribution and η = 1 means that they are drawn from the test distribution. Using

Bayes rule we then have

pt(x)

ps(x)
=

p(x|η = 1)

p(x|η = −1)
=
p(η = 1|x)p(x)

p(η = 1)

p(η = −1)

p(η = −1|x)p(x)
(2.7)

ultimately the importance ratio is simplified to

pt(x)

ps(x)
=
p(η = −1)

p(η = 1)

p(η = 1|x)

p(η = −1|x)
(2.8)

In this formulation, instead of individually estimating the marginal distributions, the

conditional probability of a single binary variable η needs to be modeled. The like-

lihood probability p(η|x) can be approximated using a probabilistic model that dis-

criminates training examples from the test examples, and outputs how much more

likely an instance is to occur in the training data than it is to occur in the test data.

The authors propose to use a logistic regression as a probabilistic model to estimate

p(η|x), and use the empirical approximation p(η=−1)
p(η=1)

≈ ns

nt
, where ns

nt
is the ratio of

number of training examples (in the source domain) to the number of test examples

(in the target domain).

2.2.1.2 Class imbalance. In calculating the importance ratio, another scenario for

establishing a relationship between source and target distributions is to assume that class

conditional likelihood probabilities of the features are the same (i.e., given the label y,

the conditional distribution of features x are the same in both domains), whereas the prior

probabilities of the class labels may be different. Mathematically, this scenario can be

described as ps(x|y) = pt(x|y) but ps(y) 6= pt(y), a phenomenon also known as class im-

16

www.manaraa.com

balance problem [49] and depicted in Figure 1(b). Under the class-imbalance assumption,

the importance ratio can be rewritten as

pt(x, y)

ps(x, y)
=
pt(x|y)pt(y)

ps(x|y)ps(y)
=
pt(y)

ps(y)
(2.9)

Class imbalance problem is typically addressed by resampling (over sampling the

minority class or under sampling the majority class) [50]. In the context of domain adap-

tation, training instances are resampled from the source domain so that the re-sampled

instances have approximately the same data distribution as the test domain. In other words,

underrepresented classes are over-sampled and overrepresented classes are under-sampled.

As an example, resampling technique is used by [51] to solve time-series forecasting prob-

lem, a challenging task as time-series data often exhibit systematic changes in the distribu-

tion of the observed values. It becomes even more challenging when the time-series data

possess significant imbalance, i.e., certain ranges of values are over-represented in com-

parison to others, and the user is particularly interested in the predictive performance on

values that are the least represented. An example of such case is financial data analysis,

where number of legitimate transactions far outnumber those of fraudulent transactions.

2.2.1.3 Semi supervised learning. Semi supervised learning is the branch of ma-

chine learning that makes use of both labeled and unlabeled data to build a hypothesis. If

we associate the source domain with labeled data (as we typically have sufficient labeled

data from the source domain), and associate the target domain with unlabeled data (as we

often have abundant unlabeled data but little or no labeled data from the target distribution),

the domain adaptation problem can be recast as a semi-supervised learning problem. The

primary difference, however, in domain adaptation there is typically abundant labeled data

17

www.manaraa.com

Figure 1. Graphical representation of covariate shift and class imbalance; (a) In covariate
shift, marginal distributions change between timesteps while posterior distribution remains
the same; (b) In class imbalance, Class priors change between timesteps, while the likeli-
hood distributions remain the same

from the source distribution, whereas most SSL algorithms assume little or no labeled data

availability. There is a significant body of work in using semi-supervised learning to handle

domain adaptation problems, some of which are briefly discussed below.

1. Semi-supervised Domain Adaptation with Subspace Learning (SDASL): A novel do-

main adaptation framework that jointly employs three regularizers is proposed in

[52]. This integration of three different regularizers attempt to correct the distribution

mismatch by projecting the original features from both source and target domains

to a lower dimensional subspace using linear predictive model. The first aim is to

explore invariant low dimensional structures across domains, minimize the domain

divergence through empirical risk minimization with a regularization penalty over

the linear predictive model parameters, and ultimately seek a decision boundary that

achieves a small classification error. This procedure is called structural risk regular-

ization. While learning a good feature subspace, the distance between mapping of

similar samples in both source and target domain is restricted by incorporating a dis-

18

www.manaraa.com

criminative regularization term in the empirical risk minimization objective function

through the procedure known as structural preservation regularizer. Finally mani-

fold regularizer, based on the smoothness assumption of semi-supervised learning,

is utilized to measure the smoothness of predicted data along with the inherent struc-

ture of unlabeled target data. In other words, the outputs of the predictive function

are restricted to have similar values for similar examples.

2. Expectation Maximization Algorithm for Domain Adaptation: An expectation max-

imization (EM) algorithm is proposed in [53] for domain adaptation, where the ini-

tial model is estimated from the source data under source distribution. The initial

model is treated as the poor estimation of the target distribution for target data. The

EM algorithm is applied to find a local optimum in the hypothesis space over target

distribution, where the estimation should gradually approach the target distribution.

Kullback Leibler (KL)-divergence between source and target domains is used to es-

timate the trade-off parameter pt(Di) between labeled and unlabeled data, where

(pt(Di); i ∈ (s, t)) is the probability of data (either source data or target data) under

target distributions, i.e., the probability of source data Ds under target distribution

pt(Ds) or probability of target data Dt under target distribution pt(Dt).

3. Generalized Distillation Semi-supervised Domain Adaptation (GDSDA): GDSDA is

proposed in [54] to effectively transfer knowledge from the source domain to the tar-

get domain using unlabeled data. A framework consisting of two models, the teacher

(source) model and the student (target) model is used by GDSDA. The knowledge

can be directly transferred from the teacher (source) model to the student (target)

19

www.manaraa.com

model without directly accessing the data used to train the teacher. Specifically, the

target model is trained using originally unlabaled target data obtained from the target

distribution, but with “soft” labels of this data as obtained from (predicted by) the

teacher model. The target model is also trained to minimize the difference between

the soft labels and the hard (actual) labels. The importance between hard labels and

soft labels is balanced by imitation parameter, whose value is generally determined

using the brute force search or domain knowledge but the authors propose a novel

imitation parameter estimation method for GDSDA, called GDSDA-SVM, which

uses SVM as the base classifier and determines the imitation parameter efficiently.

In particular, the mean square error loss for GDSDA-SVM is used and leave-one-

out cross validation (LOOCV) loss is computed. The optimal parameter is found by

minimizing the LOOCV loss.

4. Semi-supervised Instance Weighting: Traditional instance weighting for domain adap-

tation, as discussed above, only uses weighted source domain instances as training

data. An alternate approach is proposed in [42] to not only include weighted source

domain instances but also weighted unlabeled target domain instances in the training

data to handle domain adaptation problem. Hence this approach is closer to the spirit

of true semi-supervised instance weighting.

2.2.2 Supervised domain adaptation. Recall that domain adaptation is caused by

the difference in joint probability distribution ps(x, y) of the source data and the joint prob-

ability distribution pt(x, y) of the target data. Covariate shift is the most commonly used

domain adaptation scenario to characterize the difference in the distributions by estimating

20

www.manaraa.com

the ratio of these two distributions as described above, but covariate shift makes the addi-

tional assumption that posterior probability distributions are the same in both source and

target domains, i.e. ps(y|x) = pt(y|x), however it is possible that this assumption does not

hold in many practical cases.

When the assumption of posterior distribution remaining the same across the do-

mains is not satisfied, the importance ratio can not be simplified as was the case in Equation

2.3, and therefore, must be written as

pt(x, y)

ps(x, y)
=
pt(x)pt(y|x)

ps(x)ps(y|x)
. (2.10)

The optimal function f ∗t described above must then be obtained as

f ∗t = argmin
f∈H

1

Ns

Ns∑
i=1

pt(xi)pt(yi|xi)
ps(xi)ps(yi|xi)

L(xi, yi, f) (2.11)

The authors in [45] propose a heuristic solution for those cases where the posterior

distribution of source and target data differ. Instead, a different assumption of availability

of some labeled data in the target domain along with the source domain is made. A logistic

regression model pt(y|x; θt) is first learned from the available labeled target data, where θt

is the model parameter. Then, the labels of source domain examples under target domain

i.e. pt(yi|xi) are predicted using the trained model from labeled target examples. Another

logistic regression model ps(y|x; θs) is also trained this time using labeled examples from

the source domain and using this model predict the labels of source domain examples under

source domain i.e. ps(yi|xi). Finally a direct estimation of the term pt(yi|xi)
ps(yi|xi) in equation 2.11

is proposed. In other words, the estimation of the ratio between posterior distribution of

the source instances under target domain and posterior distribution of the source instances

21

www.manaraa.com

under source domain is given as follows

pt(yi|xi)
ps(yi|xi)

=
pt(yi|xi; θt)
ps(yi|xi; θs)

(2.12)

2.3 Transfer Learning

Transfer learning refers to a machine learning procedure, where knowledge learned

in the previous tasks are applied to novel tasks that are new but related domains. Transfer

learning also refers to the ability of a system to recognize those new domains that share

some commonality. In other words, the goal in transfer learning is to identify the common-

ality between the given target task and the previous (source) tasks, and then transfer the

knowledge from the source tasks to the target task. Two useful surveys on transfer learning

from two different perspectives of machine learning can be found in literature; one is the

survey on transfer learning for reinforcement learning applications [55], whereas the other

is a survey on transfer learning for classification and regression problems [56]. Transfer

learning can be categorized into two important categories as inductive transfer learning and

transductive transfer learning [56], as briefly discussed below.

2.3.1 Inductive transfer learning. In inductive transfer learning, regardless of the

similarity of the source and target domains, the target task is distinctly different from the

source task. When abundant labeled source domain data are available, inductive transfer

learning is similar to the multi-task learning [57] with one main difference: inductive trans-

fer learning attempts to transfer knowledge from the source domain to the target domain

with the goal of achieving high performance in the target domain, whereas multi-task learn-

ing attempts to simultaneously learn the source and target tasks. On the other hand, when

22

www.manaraa.com

no labeled data is available in the source domain, inductive transfer learning can be consid-

ered similar to the self-taught learning [58], which uses unlabeled data to learn higher level

representations of input, and use such representations to significantly improve the classifi-

cation performance. One example of inductive transfer learning, where source and target

task is different, is trying to recognize trucks (target task) by applying knowledge gained

while learning to recognize cars (source task).

2.3.2 Transductive transfer learning. In transductive transfer learning (TTL), the

source and target domains are different but the source and the target tasks are the same. In

other words, either input features are different in two domains, for example classification

of two sets of documents described in different language, or the marginal probability dis-

tribution of input features is different in two domains, for example in the same document

classification problem, source domain documents and target domain documents focus on

different topics. Furthermore, in TTL, no labeled data in the target domain is available,

while abundant labeled data in the source domain are available. When the difference in the

source and target domain is due to the difference in the marginal probability distribution of

the source and target data, TTL can be related to the covariate shift (domain adaptation) as

discussed above, or sample selection bias as discussed in [59].

2.4 Verification Latency

While unlabeled data are available in abundance, obtaining labeled data at every

time step of a streaming environment is often problematic in many real world applications

as it is either time consuming (e.g., document classification that requires human experts

or annotators to classify each document), expensive (e.g., medical diagnostics that require

23

www.manaraa.com

medical professionals and monetary cost associated with running various diagnostic tests),

or even possibly dangerous (e.g., obtaining label information for land-mine detection).

Figure 2. Graphical representation of verification latency: unlabeled data are received
during first two time steps t = 1 and t = 2, with labels for the t = 1 data are received at
t = 3. New unlabeled data are received at t = 4 and t = 5, followed by labels for data
received at t = 2. The process continues receiving label for data for previous timesteps in
a possibly irregular intervals.

In such cases, limited amount of data may get labeled, and event then, only with a

delay, and not immediately after data first becoming available. Such a scenario is referred

to as verification latency, which acknowledges an additional and important constraint that

must be addressed in streaming environments: labeled data may not be available at every

time-step, nor even in regular intervals, which in turn significantly complicates the learning

process. Verification latency, as denoted in [12], describes a scenario where true class

labels are not made available until sometime after the classifier has made a prediction on

the current state of the environment. The duration of this lag may not be known a priori,

and may vary with time; yet, classifiers must propagate information forward until the model

24

www.manaraa.com

can be verified. The graphical representation of this phenomenon is shown in Figure 2.

In the extreme verification latency scenario, this lag becomes infinite, meaning that

no labeled data are ever received after initialization, as illustrated in Figure 3. We call

such an environment as an initially labeled non stationary environment (ILNSE) or simply

initially labeled streaming environment (ILSE) [13].

Real-world examples of such an extreme learning setting are rapidly growing be-

cause of massive automated and autonomous acquisition of sensor, web user, weather, fi-

nancial transaction, energy usage, and other data. Furthermore, such applications can be

increasingly important. For example, network intrusion with malicious software (malware)

attacks, where malware programmers are able to modify the malware faster than network

security can identify and neutralize it, is a major current day challenge. Creating a labeled

database for this scenario is difficult and expensive.

Figure 3. Graphical representation of extreme verification latency scenario: labeled data
are received initially at t = 1; then only unlabeled data are received thereafter for t =
2, 3,, n

25

www.manaraa.com

Many automation applications provide other examples, such as robotic control sys-

tems, drones, and autonomous vehicles. Just the recent popularization of drones opens

new challenges to the computerized automation of flights of these aerial vehicles. Given a

drone initially trained in a known environment, they need to incrementally adapt to changes

in speed and direction of the wind, altitude, temperature, and atmospheric pressure in an

unsupervised manner.

26

www.manaraa.com

Chapter 3

Preliminary and Related Work

In this chapter, we describe in detail the algorithms currently available in the lit-

erature for learning from a streaming nonstationary data in the presence of extreme ver-

ification latency (EVL). As a relatively new field of machine learning, there are only a

handful of algorithms that can address learning in an EVL scenario. These algorithms

are Arbitrary Sub-Population Tracker (APT), Stream Classification Algorithm Guided by

Clustering (SCARGC), Micro-cluster for Classification (MClassification) and Compacted

Object Sample Extraction (COMPOSE).

3.1 Arbitrary Sub-Population Tracker Algorithm (APT)

The Arbitrary Sub-Population Tracker (APT) is proposed by Krempl [14] to handle

extreme verification latency problem under certain assumptions and specific scenarios, and

is based on the principle that each class in the data can be represented as a mixture of arbi-

trarily distributed sub-populations. The APT algorithm makes the following assumptions

[60]:

1. The underlying population of the feature space contains several sub-populations,

each of which drifts (possibly) differently over time;

2. The data generated from this feature space can be represented with a mixture model

of several drifting components;

3. Initial labeled data are used to represent each sub-population of the feature space,

where a sub-population is defined as a mode in the class-conditional distribution

27

www.manaraa.com

p(y|x), with p(y) representing the prior distribution of the class labels, and p(x)

representing the marginal feature distribution;

4. A multimodal class distribution is represented by individual sub-populations to be

tracked within a single class; furthermore every instance of the feature space must be

labeled at the initialization;

5. The drift only affects the conditional feature distributions p(x|z), where p(z) repre-

sents the components’ prior distributions, i.e., the mixing proportions of components

used in the mixture model to represent data;

6. The drift is gradual and systematic that can be represented as a piecewise linear

function;

7. The conditional posterior distribution p(y|z) remains fixed, i.e., a components class

label cannot change

8. The prior distribution of components, p(z), is static

9. The posterior distribution is independent of the (latent) component membership,

p(y|z) = p(y|z, x); and

10. Co-variance of each component remains constant.

Non-parametric kernel density estimation is used to estimate conditional feature distribu-

tions p(x|z) of the components, using M samples, X = x1, x2, .., xM . Krempl uses the

common choice of Gaussian (radial basis) kernel for estimation, however any standard ker-

nel estimator can be used for this purpose, such as the polynomial kernel. The standard

28

www.manaraa.com

kernel estimator modeling p̂(x) is given as

p̂(x) =
1

M

M∑
m=1

KX(x− xm) (3.1)

where, KX(x−xm) is the kernel function. When a D-dimensional Gaussian kernel is used

as the kernel, we then have

KX(x− xm) = (2π)
D
2 |C−1|

1
2 exp{−1

2
(x− xm)TC−1(x− xm)} (3.2)

where C is the covariance or generally referred to as bandwidth of the Gaussian kernel

function.

A modification to the standard Gaussian kernel is proposed to actually model the

conditional feature distribution p̂(x|z), instead of simply modeling the feature distribution

p̂(x). The modified Gaussian kernel incorporates each component z of the data, allows

different bandwidth matrix for each component, and also accounts for the drift present in

the data. In other words, the Gaussian kernel is modified to better fit APT to work in the

non-stationary environments. The adjusted kernel estimator accounting for drift present in

the data is given as

p̂(x|z) = p̂(x|z, t) =
1

M

M∑
m=1

Gm(x, t) (3.3)

where Gm(x, t) is the modified Gaussian Kernel and is represented as

Gm(x, t) = (2π)
D
2 |C−1

zm|
1
2 exp{−1

2
dTmC−1

zmdm} (3.4)

where Czm allows there to be a different bandwidth matrix for each component z, and

dm = x − (x̃m)(t) is the difference between position x and the estimated position x̃m

of the mth component at time t. Here, the estimated position is computed as (x̃m)(t) =

29

www.manaraa.com

xm + (t − tm) ∗ µ∆
zm , where µ∆

zm represents the component movement vector of the mth

component center. The initial cluster position is indicated by µ0
zm .

The learning strategy of APT is twofold; first, the optimal one-to-one assignment

between labeled instances in time-step t and unlabeled instances in time-step t + 1 is de-

termined using expectation maximization (EM) algorithm. The EM algorithm begins with

the expectation step by predicting which instances are most likely to correspond to a given

sub-population. During the maximization step, the algorithm determines which drift pa-

rameters maximize the expectation. Then, the classifier is updated to reflect the population

parameters of the newly received data and drift parameter relating the previous time step to

the current one. Following the assumption that p(z) remains static, the algorithm creates a

one-to-one mapping of an instance in time step t to a corresponding instance in time step

t + 1. Given a set of M known examples and a set of N new observations at positions

X = x1, x2, .., xN at times T = t1, t2, .., tN , the problem corresponds to the following

likelihood maximization problem

L(Θ, X, T) =
N∏
n=1

M∏
m=1

Gm(xn, tn)znm (3.5)

where Θ = {µ0
1,, µ

0
k, µ

∆
1 ,, µ

∆
k }, and znm is the latent instance-to-exemplar correspon-

dence, which is equal to 1 if instance n corresponds to exemplar m and 0 otherwise.

Establishing a one-to-one relationship while identifying drift requires an imprac-

tical assumption that the number of instances remains constant throughout all time steps.

Krempl relaxes this assumption by establishing a relationship in a batch method - matching

a random subset of exemplars to a subset of new observation until all new observations

have been assigned a relationship to an exemplar.

30

www.manaraa.com

Figure 4. Block diagram and Graphical Representations of APT; (a) Receive initial labeled
examples (represented by blue circles and orange rectangles), (b) Perform clustering of the
data (represented by blue and orange circles around the data), (c) Estimate the conditional
feature distribution of the data p(x|z) using modified Gaussian Kernel given in equation
3.3, (d) Start receiving unlabeled examples (represented by black diamonds), (e) Maximize
the likelihood function given in equation 3.5 to compute instance-to-example correspon-
dence, (f) Pass the same cluster assignment from the examples to its assigned instances to
achieve instance-to-cluster assignment, (g) Assign same label of the example to its assigned
instance.

Krempl suggests a bootstrap method that can make the one-to-one assignments

more robust, but at an additional computational cost. When the assumptions are satisfied,

APT works very well. However, APT has two primary weaknesses: 1) some of its assump-

tions often do not hold true, causing a decrease in performance, and 2) it is computationally

very expensive [13].

The pseudocode for APT algorithm is given in Algorithm 1, while the graphical

31

www.manaraa.com

representation of the algorithm illustrating its corresponding stages through block diagrams

is given in Figure 4.

Algorithm 1. Arbitrary Subpopulation Tracker (APT)

Inputs: Initial labeled data Dinit; A clustering algorithm with its own free parame-
ters; a suitable bandwidth matrices calculation algorithm; a suitable expectation-
maximization (EM) algorithm with its free parameters

1: Receive M training examples form Dinit = {xi; yi}; i = 1, ...,M ; x ∈ X; y ∈ Y =
{1, ..., c};

2: Run clustering algorithm to partition the data intoK disjoint subsets and associate each
cluster to one class among c classes ;

3: Estimate the conditional feature distribution of the data p̂(x|z) using equation 3.3;
4: Receive new unlabeled instances U t = {xtu ∈ X , u = 1, ..., N} and assume N = M

to associate each new instance to one previous example;
5: Compute instance-to-exemplar correspondence by maximizing the likelihood given in

equation 3.5 using EM algorithm;
6: Pass the cluster assignment from the example to their assigned instances to achieve

instance-to-cluster assignment;
7: Pass the class of an example xi i.e. yi to the class of its assigned instance;
8: Go to step 2 and Repeat.

3.2 Stream Classification Algorithm Guided by Clustering (SCARGC)

Souza et al. proposed an alternate algorithm, SCARGC, to solve the extreme ver-

ification latency problem [15]. SCARGC is a clustering-based algorithm that repeatedly

clusters unlabeled input data, and then classifies the clusters using the labeled clusters from

the previous time-step. SCARGC also makes several assumptions:

1. A small amount of labeled data is available initially to define the problem;

2. The drift is gradual / incremental, which allows tracking of the classes with only

unlabeled information. Incremental drift assumption as used in SCARGC requires

32

www.manaraa.com

significant overlap between class distributions in subsequent time steps and short

intervals of time;

3. The number of classes is known and fixed ahead of time.

Given the aforementioned assumptions, the algorithm builds an initial classification model

using the available labeled data from c classes, and then divide the initial labeled data

into k ≥ c clusters where k is a user-selected free parameter. If user selects k = c,

SCARGC uses c classes as initial clusters, otherwise a clustering subroutine finds clusters

and associates each cluster with one class. Souza denotes this initial set of k clusters as

C0 = C0
1 , C

0
2 , ., C

0
k . As new unlabeled data are received, the algorithm stores each ex-

ample in a pool, and predicts its label using the initial classification model. After a fixed

number of examples, also pre-determined by the user, are received and stored in the pool,

the pool of examples is clustered into k clusters in the same way as initial labeled data are

clustered, i.e., by using c classes as initial clusters if k = c, otherwise running a clustering

subroutine to associate each cluster with one class. The new set of clusters are denoted

as C1 = C1
1 , C

1
2 , , C

1
k . Each new cluster C1

i ∈ C1 is then associated with (linked to) one

of the previous clusters C0
j ∈ C0 to assign each cluster to one class. The classification

model is updated using the recently labeled examples. The algorithm then repeats the loop,

alternating between clustering and classification. The labels are decided by associating

clusters Ct in the current iteration with the labels of clusters Ct−1 from the previous it-

eration. The mapping between the clusters is performed by centroid similarity between

current and previous iterations using Euclidean distance. Given the current centroids from

the most recent unlabeled clusters and past centroids from the previously labeled clusters,

33

www.manaraa.com

one-nearest neighbor algorithm (or support vector machine) is used to label the centroid

from current unlabeled clusters.

SCARGC is computationally efficient, but its performance is highly dependent on

the clustering phase. It also requires some prior knowledge such as the number of classes

and the number of modes for each class in the data, the latter of which may limit the use of

this algorithm when such information is not available.

The block diagram representing different stages of SCARGC with accompanying

illustrations is given in Figure 5.

Figure 5. Block diagram and Graphical Representations of SCARGC; (a) Receive initial
labeled data and classify it using 1-NN or SVM classifier φ, (b) Cluster the initial data into
k clusters to form initial clusters, (c) start receiving unlabeled examples and store them in
a pool, (d) initial classifier model φ is used to predict their labels, (e) cluster the unlabeled
examples labeled by φ using k-means clustering to create new clusters at current iteration,
(f) Perform mapping between clusters from previous and current iteration using centroid
similarity, (g) Assign correct labels to unlabeled examples and update φ. The process
repeats by clustering the newly labeled data in the previous step

The algorithm receives initial labeled data and classifies it using 1-NN or SVM clas-

34

www.manaraa.com

sifier φ as shown in Figure 5(a). In Figure 5(b), SCARGC clusters the data into k clusters

to form initial clusters. The algorithm then receives unlabeled examples and stores them in

a pool as shown in Figure 5(c), and uses the initial classifier model φ to predict their labels

(Figure 5(d)). In Figure 5(e), the algorithm clusters the unlabeled examples labeled by φ

using k-means clustering to create new clusters at current iteration. The mapping between

clusters from previous and current iteration are then obtained using centroid similarity (Fig-

ure 5(f)), the labels are assigned, and the classifier is updated φ. This process continues as

long as new unlabeled data are received.

The pseudocode for SCARGC algorithm is given in Algorithm 2

Algorithm 2. SCARGC

Inputs: Initial training data Dinit, maximum pool size N , number of clusters k;
1: Receive initial labeled data Dinit = {xi; yi} ; i = 1, ...,M ; x ∈ X; y ∈ Y = {1, ..., c}
2: Build initial classifier φ using Dinit

3: Run k-means clustering algorithm to divide the data into k clusters; {Ct =
Ct

1, C
t
2, ..., C

t
k} and associate each cluster with one of the c classes

4: Start receiving new unlabeled examples from unlabeled data stream U = {xu ∈ X}
5: Store the next batch of N examples in a pool
6: Predict labels of stored examples using classifier φ as Dnew = {xu;φ(xu)};u =

1, ..., N
7: Run k-means clustering algorithm on Dnew to obtain {Ct+1 = Ct+1

1 , Ct+1
2 , ..., Ct+1

k }
8: Establish a mapping between current and previous clusters: the current clusters Ct+1

are associated to previous clusters Ct by measuring similarity between their centroids
qit; i = {1, ..., k} using Euclidean distance, i.e., Dist(qt, qt+1) where Dist represents
Euclidean distance

9: Assign current centroid qit+1 the label ŷi which is same label yi of the closest past
centroid qit

10: The current dataset now has the updated correct labels from the previous step asDt+1 =
{xu; ŷu)};u = 1, ..., N

11: Update the initial classifier φ using Dt+1

12: Go to step 4 and repeat

35

www.manaraa.com

3.3 Micro-Cluster for Classification (MClassification)

Souza et al. also proposed MClassification, an algorithm that uses the idea of micro

clusters (MC) [16] to adapt to the changes in the data over time, and learn the concepts

under extreme verification latency. A Microcluster (MC) is a compact representation of

the data points ~xi; i = {1, ..., N}, that includes the sufficient statistics of the data and are

represented in triplets (N, ~LS, ~SS), where N is the number of data points in the cluster,

~LS is the linear sum of N data points represented as ~LS = { ~x1 + ~x2 ++ ~xn}, and ~SS

is the square sum of data points represented as ~SS = { ~x1
2 + ~x2

2 ++ ~xn
2}. Thus a MC

summarizes the information about the set of N data points, from which we can calculate

the centroid and radius of the MC using the following equations

centroid =
~LS

N
(3.6)

Radius =

√
~SS

N
− (

~LS

N
)2 (3.7)

There exist two interesting properties of MC, referred to as incrementality and additivity,

which make them suitable for the streaming problems. The incrementality property states

that if we are given a set of data points whose statistics are stored in a micro-cluster A

as MCA = (NA, (~LSA), (~SSA)), we can incrementally add a new example ~x in MCA

updating the statistics of data points in the following way

(~LSA)← (~LSA) + ~x (3.8)

(~SSA)← (~SSA) + (~x)2 (3.9)

NA ← NA + 1 (3.10)

36

www.manaraa.com

whereas the additivity property provides that, if we have two disjoint Micro-clusters MCA

and MCB, the union of these two groups is equal to the sum of its parts. Thus the sufficient

statistics of a new Micro-Cluster MCC = (NC , (~LSC), (~SSC)), that stores the information

of MCA ∪MCB are computed as:

(~LSC)← (~LSA) + (~LSB) (3.11)

(~SSC)← (~SSA) + (~SSB) (3.12)

NA ← NB +NC (3.13)

Although MC is efficient and appropriate for data streaming problems, the authors observe

that MC representation has been commonly used in clustering problems. In order to use MC

to classify evolving data streams, the authors modify the representation to store information

about the class of data points, thus their representation is a 4-tuple (N, ~LS, ~SS, y), where

y is the label for a set of data points. The working of the algorithm is presented below.

The algorithm begins by receiving the initial labeled data Dinit, using which it

builds a set of labeled MCs, where each MC has information about only one example.

The algorithm then starts receiving the unlabeled data stream. A label ŷt is then predicted

for each example ~xt from the stream based on its nearest MC, computed with respect to

Euclidean distance in the classification phase. The example ~xt is added to its corresponding

nearest MC, say MCN , using the incrementality property of MC. Now the updated radius

of MCN is computed and the algorithm checks if the updated radius of MCN exceeds

the maximum micro-cluster radius threshold r defined by the user. If the radius does not

exceed the threshold r, the example ~xt remains added in MCN and its updated centroid is

also computed. The centroid position of the updated MC, i.e., MCN is therefore slightly

37

www.manaraa.com

moved in direction of the newly emerging concept of the class for new example added.

On the other hand, if the radius exceeds the threshold, a new MC say MC ′N carrying the

predicted label ŷt is created to allocate the new example ~xt. The process is repeated for

each newly received unlabeled example.

The descriptive diagram illustrating different stages of the process is given in Fig-

ure 6. The pseudocode for MClassification algorithm with the implementation details is

provided in Algorithm 3.

Algorithm 3. MClassification

Inputs: Maximum micro-cluster radius r;
1: Receive initial labeled data Dinit = {xi; yi} ; i = 1, ..., T ; x ∈ X; y ∈ Y = {1, ..., c}
2: Build T micro-clusters as MCi = (Ni, LSi, SSi, yi); i = 1, ..., T where N = number

of data points ; LS =
∑N

j=1 xj ; SS =
∑N

j=1(xj)
2

3: Calculate sufficient statistics of each micro-cluster as follows centroidi =
~LSi

Ni
;Radiusi =

√
~SSi

Ni
− (

~LSi

Ni
)2

4: Receive one new unlabeled example ~xt from the unlabeled data stream
U = {xu ∈ X}

5: Measure distance between ~xt and each micro-cluster centroids centroidi; i =
{1, ..., T} i.e. Dist(centroidi, ~xt) to find closest micro-cluster say MCN , where Dist
represents the Euclidean distance

6: Assign label of MCN i.e. ŷt to classify example ~xt
7: Add example ~xt toMCN and compute its sufficient statistics radiusN ; and centroidN
8: if radiusN > r then
9: Create a new micro-cluster for example ~xt say MC ′N = (N ′N , LS

′
N , SS

′
N , ŷt)

10: else
11: Add example ~xt to MCN and update its statistics as (~LSN) ← (~LSN) +

~xt; (~SSN)← (~SSN) + (~xt)
2;NN ← NN + 1

12: end if
13: Go to step 4 and repeat

38

www.manaraa.com

Figure 6. Block diagram and Graphical Representations of MClassificaion; (a) Receive
initial T labeled examples (represented by blue circles and orange rectangles), (b) build
T micro-clusters (represented by circles around each example) from the initial data and
compute their sufficient statistics (black cross represents the centroid of a particular micro-
cluster), (c) start receiving one unlabeled example ~xt (represented by a black diamond)
from the unlabeled data stream, (d) compute nearest micro-cluster from ~xt using Euclidean
distance, (e) Add ~xt in the nearest micro-cluster and calculate its updated radius, (f) If
radius does not exceed the threshold radius r, update the sufficient statistics of the same
micro-cluster and also compute its updated centroid which will be slightly dislocated to-
wards the new concept, (g) If radius exceeds the threshold radius r, create new micro-
cluster for ~xt and update its corresponding statistics.

3.4 COMPOSE.V1 (Original COMPOSE With α-Shape Construction)

The COMPacted Object Sample Extraction (COMPOSE) framework is introduced

in [13] to address the extreme verification latency problem in an ILSE setting, i.e., learn

drifting concepts from a streaming non stationary environment that provides only unlabeled

data after initialization. The algorithm only makes an assumption of gradual/limited drift in

39

www.manaraa.com

the data, and consists of two important modules: semi-supervised learning algorithm (SSL)

and the core-support extraction (CSE) module. It is an iterative procedure that uses an SSL

algorithm to label the current unlabeled data using the initial labeled data. It then uses the

core support extraction module to construct α shapes for each class and thus represent the

current class conditional distribution. The α shape is then compacted (shrunk), creating

the core support region, and instances that fall inside this region are extracted as the core

supports that represent the geometric center (core support region) of each class distribution.

These now-labeled instances are used as the labeled information – along with the incoming

new unlabeled data – to train the SSL algorithm during the next time step. This process is

repeated every time there is a new batch of data.

α-shape can be described as a generalization of the convex hull of the dataset, where

the convex hull of a dataset X ∈ IRd is the convex shape with minimum area that contains

all of the observations in X , and can be described as the set of all possible convex combi-

nations of the points in X , or

{
|X|∑
i=1

aixi|(∀i : ai ≥ 0) ∧
∑
i

ai = 1} (3.14)

for all possible ai. The α-shape first finds a set of adjacent d-simplices from the data

forming a partitioned version of the convex hull known as the Delaunay tesselation [61] of

the dataset, and then sets a threshold on the maximum radius of the circumsphere of any

simplex belonging to the shape. Only those simplices and their corresponding observations

form the final α-shape whose circumsphere is not too large while remaining simplices are

removed.

In order to obtain the core support region, the α-shape is compacted (shrunk) by it-

40

www.manaraa.com

eratively stripping away its outermost layer of simplices until the desired number of obser-

vations remain. The CSE procedure then returns the indices of the remaining observations

as core supports to be used as labeled data by semi-supervised learning (SSL) algorithm

for next time-step. COMPOSE is really a framework, thus it can make use of any Semi-

Supervised Learning (SSL) algorithm that the user believes to match the characteristics of

the data to improve the performance of the algorithm. The pseudocode and implementa-

tion details of the original COMPOSE version that uses α-shape construction to extract

core supports can be seen in Algorithm 4.

COMPOSE.V1 requires the following as input: i) an SSL algorithm such as cluster

and label, label propagation [62], or semi-supervised support vector machines [63] with

relevant free parameters; and ii) a CSE algorithm, i.e., α shape creation algorithm with pa-

rameters α-shape detail level, α, and a compaction percentage, CP , that represents the per-

centage of current labeled instances to use as core supports. The algorithm is seeded with

initial labeled data Dinit in step 1. COMPOSE starts by receiving N unlabeled instances

U t in each time-step. The SSL algorithm is then trained using the current unlabeled and

labeled instances, which returns an hypothesis ht that classifies all unlabeled instances of

the current time-step in step 4. The hypothesis is then used to generate a combined set of

data, Dt, in step 5, and the combined data for each class is used as the input for the CSE

routine in step 8. The resulting core supports CSc, for each class c, are appended to be

used as current labeled data in the next time-step in step 9. The block diagram explaining

different stages of the algorithm is given in Figure 7, where in Figure 7(a) COMPOSE re-

ceives initial labeled data, in Figure 7(b) it starts receiving unlabeled data (represented as

black diamonds) in Figure 7(c) it classifies unlabeled data using SSL, in Figure 7(d) COM-

41

www.manaraa.com

POSE constructs α-shapes or boundary object around each class, in Figure 7(e) compact

the boundary object to extract core supports while in Figure 7(f) extracted core supports

finally become labeled data for next time-step and the process is repeated.

Algorithm 4. COMPOSE.V1

Inputs: SSL algorithm - SSL with relevant free parameters; CSE algorithm - CSE; α-
shape detail level-α Compaction percentage - CP

1: Receive initial labeled data Dinit = {xi; yi} ; i = 1, ...,M ; x ∈ X; y ∈ Y = {1, ..., c}
Set L0 = {xti } ; initial instances
Set Y 0 = {yti} ; corresponding labels of initial instances

2: for t = 0, 1, do
3: Receive unlabeled data U t = {xtu ∈ X , u = 1, ..., N}
4: Run SSL with Lt , Y t, and U t

to obtain hypothesis, ht : X→ Y
5: Let Dt = {(xtl , ytl) : x ∈ Lt∀l}∪

{(xtu, ht(xtu)) : x ∈ U t∀u}
6: Set Lt+1 = ∅, Y t+1 = ∅
7: for each class c = 1, 2,, C do
8: Run CSE with CP , α and Dt

c

to extract core supports, CSc
9: Add core supports to labeled data

Lt+1 = Lt+1 ∪ CSc
Y t+1 = Y t+1 ∪ {yu : u ∈ [|CSc|], y = c}

10: end for
11: end for

3.5 COMPOSE.V2 (COMPOSE With Gaussian Mixture Model (GMM) or Any Den-

sity Estimation Technique)

One of the central processes of COMPOSE is the core support extraction, where

the algorithm predicts which data instances of the current environment will be useful and

relevant for classification in future time-steps, where the underlying data distributions may

42

www.manaraa.com

Figure 7. Block diagram and operation workflow of COMPOSE; (a) receive initial labeled
data; (b) start receiving unlabeled data (represented as black diamonds); (c) classify un-
labeled data using SSL; (d) construct α-shapes or boundary object around each class (e);
compact (shrink) the boundary object to extract core supports; (f) extracted core supports
become labeled data for next time-step.

have changed. In the original version of COMPOSE, α-shape construction is used for this

process, but α-shape construction is a computationally very expensive process, especially

when the dimensionality of the data increases. This is because α-shape construction re-

quires Delaunay tessellation of the data, and the algorithm used for this purpose is the

Quickhull algorithm [13]. This algorithm is of order O(n(d+1)/2) where n is the number of

observations and d is the dimensionality of the data. Hence, the algorithm is exponential

in dimensionality. In order to reduce the computational complexity of the algorithm, we

make use of the fact that the goal of the CSE is to extract the labeled data from each class

by creating an object or shape around the data and by compacting that object. This process

is essentially equivalent to density estimation.Therefore, more efficient density estimation

techniques can be used. One such approach is Gaussian Mixture Model (GMM), though

any other density estimation technique can also be used here such as Parzen windows or

kNN. We observe that GMM are significantly more computationally efficient than α-shape.

43

www.manaraa.com

The Gaussian mixture model (GMM) is a probabilistic model that describes the data as a

mixture of unimodal Gaussian distributions, and tries to fit K Gaussians to the data X

where K is a user specified parameter. The probability density function is the weighted

sum of the K Gaussians as given by the following equation,

p(θ) =
K∑
k=1

πkN (µk,Σk) (3.15)

where θ is the set of parameters describing the entire model, µk,Σk, πk are the mean, co-

variance, and mixing coefcient (i.e., prior probability) of each Gaussian component respec-

tively. The GMM algorithm uses the expectation maximization (EM) algorithm to fit the

Gaussians to the data with maximum likelihood. The EM procedure is an iterative two step

procedure that runs until convergence (or a maximum number of iterations is reached). In

the expectation step, the probability that each component, θk, can be explained by observa-

tion xi is calculated as below

p(θk|xi) =
πkp(xi|µk,Σk)∑
j πjp(xi|µj,Σj)

(3.16)

for all k, i. The maximization step then calculates new parameters for each component to

maximize the likelihood

µk =

∑
i p(θk|xi)xi∑
i p(θk|xi)

(3.17)

Σk =

∑
i p(θk|xi)θk|xi(xi − µk)(xi − µk)T∑

i p(θk|xi)
(3.18)

πk =

∑
i p(θk|xi)
N

(3.19)

The major advantage of using GMMs is that GMMs are significantly more compu-

tationally efficient than α-shapes, particularly when d is large. The computational complex-

ity of the EM procedure for GMMs is difficult to quantify, because it is an iterative proce-

44

www.manaraa.com

dure, but it has been shown that the E-step and the M-step are of the order O(NKd+NK)

and O(2NKd), respectively, for each iteration, where N is the number of observations, K

is the number of mixture components and d is the dimensionality. Our results in chapter 5

confirms that the GMM approach is indeed substantially faster than constructing α-shapes

for any given dimensionality and data cardinality.

The pseudocode and implementation detail of COMPOSE.V2 is similar to COM-

POSE.V1 with the difference of using GMM instead of the α-shapes construction for core

supports extraction module. The operational flow of the algorithm is illustrated in Figure

7.

45

www.manaraa.com

Chapter 4

Improving Learning Concept Drift Under Extreme Verification Latency:

Learning Extreme Verification Quickly With FAST COMPOSE and With

Importance Weighting (LEVELIW)

In this chapter, we introduce two algorithms to improve learning concept drift un-

der extreme verification latency. We first introduce FAST COMPOSE, a modification of

the COMPOSE (COMpacted Object Sample Extraction) framework that works without

the computationally expensive core support extraction module, and hence dramatically im-

proves the computational efficiency of the COMPOSE framework. We then introduce the

algorithm LEVELIW: Learning Extreme VErification Latency with Importance Weighting,

which is based on importance weighting approach commonly used for domain adapta-

tion problems. Unlike the standard importance weighting algorithms commonly used in

single time-step problems of mismatched training (source) and test (target) distributions,

LEVELIW is designed to work in a streaming data environment. As we will discuss in

Chapter 5, the primary benefits of these algorithms are not so much improved accuracy, but

rather computational efficiency, in case of FAST COMPOSE, and parameter robustness in

case of LEVELIW.

4.1 The Underlying Problems With Current Approaches

Addressing extreme verification latency in non-stationary environments is not a

trivial task, and it is still an open research topic in machine learning. The prior work of

our group (Signal Processing and Pattern Recognition Laboratory at Rowan University),

resulted in the COMPOSE [13] framework – with α-shapes and GMMs – which works re-

46

www.manaraa.com

markably well in this setting, with the only assumption of limited drift (a common assump-

tion of all concept drift algorithms). Unlike other algorithms, COMPOSE does not make

any additional assumptions with respect to the nature of the drift or the properties of the un-

derlying distribution. However, the ability of COMPOSE to track a non-stationary environ-

ment in an extreme verification latency scenario comes at a steep cost: COMPOSE is com-

putationally expensive. Specifically, in the original version of COMPOSE, computational

complexity is exponential in dimensionality, though in the second version this was signif-

icantly reduced by replacing the most expensive portion of COMPOSE, i.e., α-shape con-

struction for core support extraction with any density estimation technique whether para-

metric or non-parametric. Specifically the parametric Gaussian Mixture Model (GMM)

worked very well for this purpose [64], but we observe that density estimation itself is

not a trivial task: the process is still – relatively speaking – a computationally expensive

process, and it requires significant amount of data. In the case of parametric GMM, one ad-

ditional assumption is that the underlying distribution can be adequately represented with a

mixture of Gaussians, whose mean, variance and mixture coefficients need to be estimated.

Of course, in real world situations, arbitrary shaped distributions can be approximated with

GMMs provided that they are well represented with data and a sufficiently large number

of K Gaussians are chosen. Furthermore, the common subroutine used with GMM for

density estimation is the expectation-maximization (EM) algorithm, an iterative algorithm

for maximizing the likelihood and correctly estimating the parameters. However, the EM

algorithm is not guaranteed to converge to find the model with global maximum likelihood,

even if correct K is chosen (though the local maxima found by the algorithm may be suf-

ficient, as has been the case in our experiments). In addition, in real world scenarios, we

47

www.manaraa.com

rarely know the true value of K. The common solution to the optimal choice of K is es-

sentially a trial and error based cross-validation: try a range of K values and choose the

one that minimizes some penalty or cost function.

There are of course, non-parametric density estimation approaches as well, which

attempt to estimate the density directly from the data without assuming a particular form

of the underlying distribution, such as those based on histogram approximation, or Parzen

windows or kernel density estimation. Each of these approaches have their own respective

shortcomings. For example, histogram approximation is extremely data hungry with the

amount of needed data increasing exponentially with dimensionality; the standard Parzen

windows introduce spurious discontinuities to the density being estimated, and smooth

kernel based kernel density estimation have several parameters to choose - depending on

the kernel chosen - to which the algorithm is typically very sensitive. Furthermore, while

we specifically mentioned this for histogram approach, all non-parametric density estima-

tion approaches suffer from curse of dimensionality, and require large amounts of data for

proper training.

The specific issues related to density estimation notwithstanding, there are addi-

tional concerns with respect to either implementation of COMPOSE. These concerns are

independent of the specific selection of density estimation procedure, and would remain

with any density estimation approach, however efficient or effective it may be. Originally,

it was thought that the core support extraction routine would extract a region that has a

high probability of overlap with drifted unlabeled data at the next timestep. However, be-

cause the core support extraction routine is executed using the hypothesis at timestep t

along with labeled data at time-step t (which themselves are the core supports extracted at

48

www.manaraa.com

timestep t − 1), the most dense region will lie in the overlap of the labeled and unlabeled

data from time-step t labeled by the hypothesis at timestep t. Therefore, the core supports

at timestep t will be further away from the unlabeled data at timestep t+ 1, and in turn the

CSE routine will extract a region that has a lower probability of overlap with the drifted

data. Figure 8 illustrates the above described scenario, where the blue instances inside

the blue circle represent the labeled data at time-step t (i.e., the core supports extracted in

time-step t − 1) denoted as CSt−1/Lt; the middle gray circle represents the distribution

from which unlabeled data are drawn at time-step t, with the unlabeled data themselves

indicated by the black diamonds and denoted as U t. The right gray circle represents the

distribution from which unlabeled data are drawn at time-step t+1, with the unlabeled data

indicated with the green stars and denoted as U t+1. Finally, the instances in the pink circle

represent the core supports extracted in time-step t to be used as labeled information for

time-step t+ 1. Under the core support extraction process used in COMPOSE, we see that

the unlabeled data (green stars) at time-step t + 1 are further away from the core supports

(inside the pink circle) than they are from all of the unlabeled data as a whole. This insight

instructs us that using all of the data (once labeled by the SSL algorithm) may be more

effective then the core supports used under the original COMPOSE algorithm. Further-

more, since the core support extraction – as accomplished either by α−shape creation or

density estimation – is the computational bottleneck of the algorithm, any improvement on

the core support extraction has the dual benefit of increasing computational efficiency, as

well as posisbly improving classification performance.

Before, we describe how the modified COMPOSE is structured and how it ad-

dresses the aforementioned issues, it is perhaps worthwhile to identify and summarize

49

www.manaraa.com

Figure 8. Example depicting core support extraction procedure in COMPOSE; new unla-
beled instances at time t+1 are further away from the core supports selected at time t, then
they are from the centroid of all unlabeled data obtained at time t.

the shortcomings in various algorithms in the extreme learning verification applications.

While COMPOSE has the above-described issues, other algorithms are not without their

own shortcomings, typically more serious than those of COMPOSE. APT, for example,

[14] is extremely computationally expensive (so much so that it becomes computationally

prohibitive to run it even for modestly dimensioned data), and it makes some unrealistic

assumptions, such as all modes of the distribution representing the data being present at the

initialization, or the drift being structured, systematic and piecewise linear, etc. SCARGC

[15] is computationally efficient, but it is heavily dependent on the clustering phase, which

requires some prior knowledge about the data – information is rarely available in real world

scenarios. MClassification [16] requires only one parameter, but since it is an online algo-

rithm, (i.e., processing instances one example at a time), it is also computationally pro-

hibitive. MClassification also appears to be not a suitable algorithm for those datasets

where positions and parameters of the data distributions representing different classes sud-

50

www.manaraa.com

denly change along with the between class overlap over time. Clearly, there is room for

improvement.

4.2 Learning Extreme Verification Latency Quickly: FAST COMPOSE

Our modification of COMPOSE with respect to core support extraction module is

based on the following observation. Originally a significant overlap of class conditional

distributions between consecutive time steps was thought to be the working definition of

gradual / limited drift, and hence a necessary condition for COMPOSE to work. However,

Sarnelle et al. showed in [65] that COMPOSE can work equally well for scenarios even

when there is no overlap of distributions in consecutive time steps, as long as the distance

between the unlabeled data with core supports of a given class is less than the distance from

the nearest core supports of any other opposing class. We refer to this condition as limited

drift, and now distinguish it from gradual drift that does require an overlap of distributions

in subsequent time-steps. As a result, we show that the condition of significant overlap (or

gradual drift) can be eliminated, and replaced with the more relaxed condition of limited

drift. We observe that for cases where there is no significant overlap, core support extrac-

tion procedure has very little impact on accuracy because it does not change centroids in

any considerable amount, and clustering based SSL algorithm can easily track the drifting

distributions using nearest centroids.

Additionally, as described above, the density estimation procedure is impractical

for high dimensional data due to its computational complexity. Taken together then, an

obvious questions that comes to mind is whether the density estimation based core support

extraction is needed at all. To answer this question, we removed the core support extraction

51

www.manaraa.com

procedure of COMPOSE entirely, and all instances labeled by the semi-supervised algo-

rithm are then used as “core supports,” i.e., the most representative instances for the future

time-steps. We call this modified version of the algorithm FAST COMPOSE [66].

The pseudocode and implementation details of FAST COMPOSE are shown in

Algorithm 5. FAST COMPOSE only requires an SSL algorithm with its relevant free

parameters as an input. The algorithm begins by receiving M initially labeled instances,

L0, and corresponding labels Y 0, of C classes in step 1. The algorithm then receives a new

set of N unlabeled instances U t. The SSL algorithm is then executed given the current

unlabeled and labeled instances to receive the hypothesis ht of the current time-step in step

4. The hypothesis is then used to label the data for the next time-step as shown in steps 5 -

8 of Algorithm 5.

Algorithm 5. FAST COMPOSE

Input: SSL algorithm - SSL with relevant free parameters
1: Receive labeled data
L0 = {xtl ∈ X} ,
Y 0 = {ytl ∈ Y = {1, . . . , C} , l = 1, . . . ,M}

2: for t = 0, 1, do
3: Receive unlabeled data U t = {xtu ∈ X , u = 1, ..., N}
4: Run SSL with Lt , Y t, and U t

to obtain hypothesis, ht : X→ Y
5: Let Dt = {(xtu, ht(xtu)) : x ∈ U t∀u}
6: Set Lt+1 = ∅, Y t+1 = ∅
7: for each class c = 1, 2,, C do
8: CSc = {x : x ∈ Dt

c} , and add to labeled data for next time-step
Lt+1 = Lt+1 ∪ CSc
Y t+1 = Y t+1 ∪ {yu : u ∈ [|CSc|], y = c}

9: end for
10: end for

52

www.manaraa.com

Figure 9. Block diagram and graphical illustration of FAST COMPOSE; (a) Receive initial
labeled data represented as colored squares and circles, (b) start receiving unlabeled data
(represented as black diamonds), (c) classify unlabeled data using SSL, (d) construction of
boundary object is no longer required; (e) nor is compaction of that object; (f) use all the
labeled data as core supports to be used for next time-step.

The graphical representation of FAST COMPOSE illustrating its different stages

can be seen in Figure 9. Initial labeled data (indicated in yellow and blue) are received in

Figure 9(a), and the algorithm starts receiving unlabeled data (indicated in black diamonds)

in 9(b). SSL algorithm is used to classify unlabeled data in 9(c). The construction of bound-

ary object and compaction of that object, as done in two previous versions of COMPOSE

are no longer needed by FAST COMPOSE as shown in 9(d) and 9(e), respectively. Finally

in 9(f) the algorithm uses all data just labeled by SSL algorithm as core supports for the

next time step and the process is repeated.

4.3 LEVELIW: Learning Extreme VErification Latency With Importance Weighting

The primary shortcoming of the COMPOSE algorithm, and hence the goal in de-

veloping its third version was well known and motivated: the density estimation based core

support extraction is computationally expensive, and we were investigating alternative ap-

53

www.manaraa.com

proaches to reduce the algorithm’s computational burden by removing the computational

bottleneck. As shown in Chapter 5 and demonstrated by large number of experiments, the

new version of COMPOSE did indeed met our goals, and is currently the fastest running

and hence computationally most efficient algorithm for learning in nonstationary environ-

ments under extreme verification latency, hence earning its name FAST COMPOSE.

The second approach we explored was motivated more by academic curiosity than

having a specific improvement on a particular metric, and was inspired by a simple obser-

vation: there is a fundamental similarity between the domain adaptation problem and the

problem of learning in a nonstationary environment. In both cases, there is a change in dis-

tribution between the two consecutive time steps where the environment is provided with

additional data. In case of domain adaptation, the problem is a mismatch of distributions

between the source (training) and target(testing) domains, where there is often little or no

labeled data from the target domain. While there is no streaming data in a domain adap-

tation problem, this setting is similar to any two consecutive iterations of the learning in

a nonstationary environment with extreme verification latency (EVL). Therefore, a logical

question to ask is whether an algorithm used for domain adaptation can also be used in

EVL setting, by iteratively repeating the domain adaptation algorithm every time there is

new data.

We observe that importance weighting based domain adaptation used for covariate

shift and concept drift problems are related, though algorithms for each make different as-

sumptions. Concept drift problems typically assume at least a gradual (or at least limited)

drift assumption, but do not require stationary posteriors or shared support. We explore

whether and when well-established, computationally efficient importance weighting based

54

www.manaraa.com

domain adaptation approaches can be used for concept drift problems associated with ex-

treme verification latency. We show that the answer to this question is affirmative, when

indeed the original importance weighting (covariate shift) assumptions are satisfied, i.e.,

the class conditional distributions at consecutive time steps share support, and posterior

distributions do not change.

More specifically, recall that COMPOSE originally assumed a significant distribu-

tion overlap at consecutive time steps, allowing instances lying in the center of the feature

space to be used as the most representative labeled instances from current time step to help

label the new data at the next time step. Such an assumption is also inherent in importance

weighting based domain adaptation, but only for a single time step with mismatched train

and test data distributions. We therefore explore importance weighting not for a single time

step matching training / test distributions, but rather matching distributions between two

consecutive time steps, and estimate the posterior distribution of the unlabeled data using

importance weighted least squares probabilistic classifier (IWLSPC), as explained in de-

tail later in this chapter. The estimated labels are then iteratively used as the training data

for the next time step. We call this algorithm LEVELIW: Learning Extreme VErification

Latency with Importance Weighting.

To explain how we use importance sampling based domain adaptation in the EVL

setting, we first describe importance weighted least square probabilistic classifier, as first

proposed in [67].

4.3.1 Importance weighted least-squares probabilistic classifier. One of the most

important components of the LEVELIW algorithm is the importance weighted least-squares

55

www.manaraa.com

probabilistic classifier (IWLSPC), which combines a probabilistic classification method,

called least-squares probabilistic classifier, with the covariate shift adaptation technique.

As described in more detail in [67], where this approach was first proposed, probabilis-

tic classification is used to estimate the true class-posterior probability p(y|x), modeled

through the following linear model

p(y|x,θy) =
∑
n

θy,nK(x,xte,n) (4.1)

where n is an index on number of instances, xte,n is the nth test instance, θy = (θy,1, . . . , θy,n)

is the parameter vector of linear model, and K(x,xte) is a Kernel function, typically the

Gaussian kernel

K(x,xte,n) = exp (−||x− xte,n||2

2σ2
) (4.2)

with kernel width σ serving as the first free parameter for IWLSPC. The parameter vector

θy is determined by minimizing the squared error Jy(θy) through quadratic programming

Jy(θy) =
1

2

∫
(p(y|x;θy)− p(y|x))2pte(x)dx

=
1

2
θTyQθy − qTy θy +

λ

2
θTy θy

(4.3)

where the last term is a regularization term to minimize over-fitting through the algorithms’s

second free parameter λ, and where Q – an nte×nte matrix – and qy = (qy,1, . . . , qy,nte) are

approximated using the adaptive importance sampling technique, through the importance

weight defined as

w(x) =
pte(x)

ptr(x)
(4.4)

56

www.manaraa.com

The quantities Q and qy are then obtained as follows

Qn,n′ =

∫
K(x,xte,n)K(x,xte,n′)ptr(x)w(x)dx (4.5)

qy,n = p(y)

∫
K(x,xte,n)ptr(x|y)w(x)dx (4.6)

where ptr(x|y) denotes the training input density for class y. Based on the above expres-

sions, Q and qy are approximated using the training samples {xtr,n,ytr,n}Ntr
n=1 as follows

Q̂n,n′ =
1

Ntr

Ntr∑
n′′=1

K(xtr,n′′ ,xte,n′)K(xtr,n′′ ,xte,n′)w(xtr,n′′) (4.7)

q̂y,n =
1

Ntr

∑
n′;ytr,n′=y

K(xtr,n′ ,xte,n)w(xtr,n′) (4.8)

where, the class prior probability p(y) was estimated by Ntr,y/Ntr, and Ntr,y denotes the

number of training samples with label y. The following optimization problem is conse-

quently obtained to solve for θy, which in turn is used to determine the class-posterior

probability p(y|x;θy) through Equation 4.1.

θ̂y = argmin
θy

[
1

2
θTy Q̂θy − q̂Ty θy +

λ

2
θTy θy] (4.9)

Given a test instance xte, the class label yte is finally estimated as

ŷte = argmax
y

p(y|xte;θy). (4.10)

The critical parameter in model selection for IWLSPC is kernel width σ, which

is obtained through importance weighted cross validation (IWCV) [68] (as described in

IWLSPC’s original description in [67]) and it is updated each time step separately. Cross-

validation (CV) is a standard procedure for model (or parameter) selection, but under co-

variate shift, ordinary CV is highly biased due to differing distributions. Therefore modified

57

www.manaraa.com

version of the ordinary CV is proposed in [68] known as importance weighted cross vali-

dation (IWCV), which basically weighs the validation error in the ordinary CV procedure

according to the importance. The pseudocode of the original IWCV is given in Algorithm

6.

Algorithm 6. IWCV

Inputs: Training data D = {xi, yi}; i = 1, .., Ntr ; number of folds K in K-fold loss
1: Divide the training data into K disjoint non-empty subsets {Dk}Kk=1

2: Build a hypothesis h(xi) from D - Dk (i.e. without Dk)
3: Compute the mean discrepancy between the true output value yi and its estimate ob-

tained using hypothesis h(xi) i.e. loss(h(xi), yi)
4: Compute K-fold IWCV estimate of the generalization error as ĜIWCV =

1
K

∑K
k=1

1
|Dk|

∑
(x,y)∈Dk

w(x)loss(h(x), y)

The importance weights in Equation 4.4 are estimated through unconstrained least

squares importance fitting (uLSIF) [69] as done in [67]. uLSIF formulates the direct im-

portance estimation problem as a least-squares function fitting problem. A linear model is

used to model the importance ratio as given below

ŵ(x) =
∑
n

αnK(x, xte,n) (4.11)

where, α = (α1, . . . , αn) is the parameter vector of linear model to be learned from data

samples, and K(x, xte,n) is a Gaussian kernel function given in Equation 4.2. The parame-

ters αn for the linear model are determined by minimizing the squared error J0 between the

58

www.manaraa.com

actual importance w(x) and modeled importance ŵ(x) through quadratic programming.

J0(α) =
1

2

∫
(ŵ(x))− w(x))2ptr(x)dx

=
1

2

∫
ŵ(x)2ptr(x)dx−

∫
ŵ(x)w(x)ptr(x)dx+

1

2

∫
w(x)2ptr(x)dx

=
1

2

∫
ŵ(x)2ptr(x)dx−

∫
ŵ(x)pte(x)dx+

1

2

∫
w(x)2ptr(x)dx

(4.12)

The last term in Equation 4.12 is constant and therefore can be safely ignored for the

purposes of minimizing the squared error objective function. Let us denote the first two

terms by J as given below

J(α) =
1

2

∫
ŵ(x)2ptr(x)dx−

∫
ŵ(x)pte(x)dx

=
1

2

∑
n,n′

αnαn′(

∫
K(x, xte,n)K(x, xte,n′)ptr(x)dx)−

∑
n

αn(

∫
K(x, xte,n)pte(x)dx)

=
1

2
αTHα− hTα

(4.13)

where, T denotes the transpose, H is the n × n matrix with the (n, n′)th element denoted

as

H =

∫
K(x, xte,n)K(x, xte,n′)ptr(x)dx (4.14)

and h is the n-dimensional vector with the nth element denoted as

h =

∫
K(x, xte,n)pte(x)dx (4.15)

The equations 4.14 and 4.15 can be approximated using simple mean across the

samples in both source and target distributions as given below.

Ĥ =
1

Ntr

Ntr∑
i=1

K(xtr,i, xte,n)K(xtr,i, xte,n′) (4.16)

and h is the n-dimensional vector with the nth element denoted as

ĥ =
1

Nte

K(xte,j, xte,n) (4.17)

59

www.manaraa.com

where Ntr and Nte represent the total number of training and test examples respectively.

The solution to an optimization problem is obtained in order to find the values of the pa-

rameter vector α. These parameter vector values are ultimately used in Equation 4.11 to

estimate importance values. The pseudocode of uLSIF algorithm is given in Algorithm 7.

Algorithm 7. uLSIF

Inputs: Training data xtr; Test data xte; Gaussian Kernel with suitable bandwidth
1: Compute value of H using equation 4.14
2: Compute value of h using equation 4.15
3: Estimate parameter α by minimizing squared error J(α) as defined in Equation 4.13
4: Use α, and the Gaussian Kernel function to compute importance ratio as defined in

Equation 4.11.

Here, we suitably modified IWLSPC – originally proposed for only single time

step problems, where it was used to match the divergence in the training (source) and test

(target) distributions on a non-streaming data application – and extended its use to problems

in which i) data arrive in a continuous streaming fashion, where concept drift is occurring

possibly at every time step, and perhaps more importantly ii) data arrive with extreme

verification latency. The pseudocode of the original IWLSPC is given in Algorithm 8

60

www.manaraa.com

Algorithm 8. IWLSPC

Inputs: Subroutines for unconstrained least squares importance fitting uLSIF - Impor-
tance weighted cross validation IWCV

1: Receive training data xtr
2: Receive test data xte
3: Run uLSIF to estimate importance weights by minimizing the squared error between

actual importance and modeled importance using equation 4.13
4: Run IWCV to weigh the validation error in estimating Gaussian kernel width σ accord-

ing to the importance
5: Compute Gaussian Kernel Function using σ as defined in Equation 4.2
6: Estimate parameter θy by minimizing squared error Jy(θy) as defined in Equation 4.3
7: Use θy, and the Gaussian Kernel function to compute posterior probability as defined

in Equation 4.1.

4.3.2 LEVELIW. The common assumption made by most concept drift algorithms

is that the data drift gradually between two time steps that allows class-conditional dis-

tributions of any class to possess significant overlap at each consecutive time steps; this

significant overlap is also the motivation behind using the importance weighting approach

as such overlap is likely to result in satisfying the two important assumptions of importance

weighting approaches: i) shared support of class-conditional distributions at two consec-

utive time steps; and ii) posterior distribution for each class remains the same (or at least,

changes very little). Recall that importance weighting, as used in domain adaptation, is in-

tended for a single time step scenario with mismatched training and test datasets, whereas

we need an algorithm that is intended to be used in streaming datasets with nonstationary

distributions. Therefore, iteratively applying importance weighting, where each consec-

utive time step serve as the traditional source and target datasets, allows us to cast the

importance weighting in a streaming data environment, with the caveat that we are in fact

61

www.manaraa.com

Figure 10. Block diagram and graphical representation of of LEVELIW; (a) Receive ini-
tially labeled source data, (b) receive unlabeled target data, (c) re-weigh source data using
importance weighting, (d) use IWLSPC to label unlabeled target data, (e) labeled target
data becomes source data for next time step

working in an extreme verification latency environment. Hence, we name our approach

Learning Extreme VErification Latency with Importance Weighting: LEVELIW.

The pseudocode and implementation details of this approach are described below

and summarized in Algorithm 9, whereas the graphical representation of this approach

showing its different stages is shown in Figure 10, where importance weight pt(x)/ps(x)

is used to re-weigh the labeled source instances as shown in Figure 10(c), while this re-

weighted instances are used to label the unlabeled target instances in Figure 10(d) using

IWLSPC. Finally the labeled target data become the source data for the next time step and

the process is repeated as shown in Figure 10(e).

LEVELIW takes advantage of the importance weighted least squares probabilistic

classifier (IWLSPC) as a subroutine [67], and hence serves as a wrapper approach.

62

www.manaraa.com

Algorithm 9. LEVELIW

Inputs: Importance weighted least squares probabilistic classifier - IWLSPC; Kernel
bandwidth value σ

1: At t = 0, receive initial data x ∈ X and the corresponding labels y ∈ Y = 1, . . . , C.
Set xt=0

te = x
Set yt=0

te = y
2: for t = 1,, do
3: Receive new unlabeled test data xtte ∈ X
4: Set xttr = xt−1

te

5: Set yttr = yt−1
te

6: Call IWLSPC with xttr, xtte, yttr, and σ to estimate ytte
7: end for

Initially, at t = 0, LEVELIW receives data x with their corresponding labels y,

initializes the test data xt=0
te to initial data x received, and sets their corresponding labels

yt=0
te equal to the initial labels y. Then, the algorithm iteratively processes the data, such that

at each time step t, a new unlabeled test dataset xtte is first received, the previously unlabeled

test data from previous time step xt−1
te , which is now labeled by the IWLSPC subroutine,

becomes the labeled training data xttr for the current time step, and similarly the labels yt−1
te

obtained by IWLSPC during the previous time step become the labels of the current training

data xttr. The training data at the current time step xttr, the corresponding label information

at the current time step yttr, the kernel bandwidth value σ and the unlabeled test data at the

current time step xtte are then passed onto the IWLSPC algorithm, which predicts the labels

ytte for the test unlabeled data. The entire process is then iteratively repeated.

63

www.manaraa.com

Chapter 5

Experiments, Results and Comprehensive Analysis of Algorithms for Learning

Under Extreme Verification Latency

Fifteen synthetic datasets and one real dataset constituted the primary test bench

used in the evaluation and comparison of the algorithms that are designed to handle ex-

treme verification latency. These datasets were selected because they are also used as a

benchmark by the authors of the other algorithms. Some of these datasets (indicated by

an asterix in Table 1) were originally provided by us in our prior works of [5] and [13],

and others are provided by the authors of SCARGC in [15], and then provided at one con-

venient web site (https://sites.google.com/site/nonstationaryarchive/) for machine learning

community.

Brief descriptions of these datasets are provided below, whose important character-

istics are listed in Table 1.

1. 1CDT represents a 2-class, bi-dimensional dataset, where one class (1C) is diago-

nally translating (DT) over the other class;

2. 2CDT represents a 2-class, bi-dimensional dataset, where two classes (2C) are di-

agonally translating (DT) through each other;

3. 1CHT represents a 2-class, bi-dimensional dataset, where one class (1C) is horizon-

tally translating (HT);

4. 2CHT represents a 2-class, bi-dimensional dataset, where two classes (2C) are hor-

izontally translating (HT);

64

www.manaraa.com

5. 4CR represents a 4-class, bi-dimensional dataset, where four classes (4C) are rotat-

ing (R) with complete separation among them;

6. 4CRE − V 2 represents a 4-class, bi-dimensional dataset, where four classes (4C)

are rotating (R) with expansion (E) causing the classes to overlap at some points;

7. 5CV T represents a 5-class, bi-dimensional dataset, where five classes (5C) are ver-

tically translating (V T);

8. 1Csurr represents a 2-class, bi-dimensional dataset where one class (1C) circum-

navigates (surrounds) (surr) the other class;

9. 4CE1CF represents a 5-class, bi-dimensional dataset, where four classes (4C) are

expanding (E) while the remaining one class (1C) stays fixed (F);

10. UG 2C 2D represents a 2-class, bi-dimensional unimodal Gaussian dataset;

11. MG 2C 2D represents a 2-class, bi-dimensional Multi-modal Gaussian dataset;

12. GEARS 2C 2D represents a 2-class, bi-dimensional dataset, where two gears rep-

resenting two different classes are rotating;

13. FG 2C 2D represents a two bi-dimensional classes as four Gaussians;

14. UG 2C 3D represents a 2-class, three dimensional unimodal Gaussian dataset;

15. UG 2C 5D represents a 2-class, five dimensional unimodal Gaussian dataset; and

finally the real-world dataset

65

www.manaraa.com

Table 1

Dataset descriptions

Datasets # of classes
of fea-

tures
Cardinality

Drift

interval

Class

Overlap
1CDT 2 2 16000 400 no
1CHT 2 2 16000 400 no
1CSurr 2 2 55283 600 yes
2CDT 2 2 16000 400 yes
2CHT 2 2 16000 400 yes
4CE1CF 5 2 173250 750 no
4CR 4 2 144400 400 no
4CRE-V2 4 2 183000 1000 yes
5CVT 5 2 40000 1000 yes
FG 2C 2D* 2 2 200000 2000 yes
GEARS 2C 2D 2 2 200000 2000 no
MG 2C 2D* 2 2 200000 2000 yes
UG 2C 2D* 2 2 100000 1000 yes
UG 2C 3D* 2 3 200000 2000 yes
UG 2C 5D* 2 5 200000 2000 yes
keystroke 4 10 1600 200 DNK

16. keystroke dataset represents a 10-dimensional, four-class dataset with a complex drift

scenario, contains information from the keystrokes dynamics obtained from the users

who type a fixed password, .tie5Roan1, followed by the Enter key 400 times in 8

sessions performed on different days. The task of the classifier is to classify each one

of four different users over time according to their typing profile.

The synthetic datasets are deliberately chosen to be two dimentional so that their

drift can be visualized. Evolving behavior of different class distributions showing the

progress of drift for datasets 1CDT , 1CHT , 2CDT , and 2CHT are illustrated in Fig-

ure 11 a~d using three snapshots in time. The black arrows indicate the direction in which

66

www.manaraa.com

each distribution drift.

Figure 11. Progress of drift for 1CDT, 1CHT, 2CDT, and 2CHT datasets; (a) 1CDT data
for three different snapshots with black arrow representing the drift direction of red class
throughout the experiment, (b) 1CHT data for three different snapshots, (c) 2CDT data for
three different snapshots, (d) 2CHT data for three different snapshots.

Figure 14 a~d illustrate the similar behavior for datasets 4CR, 4CRE−V 2, 1Csurr

and 4CE1CF , respectively. Figure 12, Figure 13, Figure 15, Figure 18, Figure 20, and

Figure 22 show the drift progress for datasets GEARS 2C 2D, UG 2C 3D, 5CV T ,

FG 2C 2D, MG 2C 2D and UG 2C 2D respectively.

67

www.manaraa.com

Figure 12. Three different snapshots of GEARS 2C 2D data

Figure 13. Three different snapshots of UG 2C 3D data

68

www.manaraa.com

Figure 14. Progress of drift for 4CR, 4CRE-V2, 1Csurr, and 4CE1CF datasets;(a) 4CR
data for three different snapshots with black arrows representing the drift direction of each
class throughout the experiment, (b) 4CRE-V2 data for three different snapshots, (c) 1Csurr
data for six different snapshots with black arrow representing the drift direction of red class
throughout the experiment, (d) 4CE1CF data for three different snapshots with black arrows
representing the drift direction of 4 classes with the middle class stay stationary throughout
the experiment.

We analyze the algorithms’ behavior from three different perspectives: the average

classification accuracy shown in Table 2, computational complexity of these algorithms

as measured in runtime on a fixed system shown in Table 3, and a more detailed param-

eter sensitivity based analysis shown in Tables 6, 7, 8, and 9. Our analyses here include

SCARGC, MClassification, COMPOSE and LEVELIW. Arbitrary sub-population tracker

(APT) was not included in the analyses, as this algorithm’s steep computational complexity

was prohibitive on running of some of the larger datasets. This behavior of APT was also

previously reported in [13], even on a simple bi-dimensional problem.

69

www.manaraa.com

The analysis of this algorithm in [13], when originally compared to COMPOSE

also revealed another significant shortcoming – that APT requires all modes of the data

distribution to be present at the initialization, and hence can not accommodate scenarios

where a distribution splits into multiple modes or vice versa over time. Taken together,

then, these two concerns rendered APT to be less competitive compared to other algorithms

in real world scenarios and hence was not included in further analysis.

In order complete proper statistical analysis of the algorithms’ performance to de-

termine whether there are statistically significant differences with respect to the aforemen-

tioned figures of merit (accuracy, runtime, parameter sensitivity), we ran all algorithms

on all datasets multiple times, and then used the Friedman test along with its correspond-

ing Nemenyi post-hoc test. The post-hoc test results comparing the statistical significance

(p ≤ 0.05) for accuracy and execution time are found in Tables 4 and 5, respectively.

Empty cells at the intersection of any two algorithms indicate that the difference in accu-

racy or execution time between those two algorithms was not statistically significant. A

left arrow (←) or an up arrow (↑) at the intersection of any two algorithms represents a

statistically significant difference, with the direction of the arrow indicating the classifier

that performed significantly better.

The results in this chapter are organized by algorithm, discussing the observations

made for each algorithm under evaluation in comparison to others. All evaluations are

based on the Tables mentioned above, which are collectively provided at the end of the

chapter, all in one place.

70

www.manaraa.com

5.1 Analysis of Three Versions of COMPOSE

Average accuracy results comparing all three versions of COMPOSE (COMPOSE

with α-shapes, with GMM and FAST COMPOSE), do not show any significant difference

among them, or among any of the other algorithms as shown in Table 4. We do observe,

however, that FAST COMPOSE – while not quite with statistical significance at 0.05 level

– does perform consistently better on most datasets compared to all other algorithms, and

provides the lowest overall average rank (lower rank is better in performance, rank 1 is the

best algorithm and rank 7 is the worst algorithm). While all three versions of COMPOSE

provide similar classification performance when averaged across all datasets (at least in

terms of lack of statistical significance), looking at a particular dataset where the difference

is significant may provide additional insights. Table 2, which lists the average accuracy of

the algorithms, shows that performance is similar for all datasets except 5CV T . 5CV T is a

dataset in which five classes (5C) are subject to vertical translation (V T) in one direction.

Four different snapshots of this dataset are illustrated in Figure 15, where black arrows

indicate the (common) direction of drift for all classes. This dataset, when used in its

original form as provided in the repository, seems not particularly challenging at first look

(class overlap is relatively modest, so is the drift rate), but a closer inspection of this dataset

reveals class imbalance, with one class having twice as many instances as other four classes.

We observe that applying core support extraction process to extract the useful in-

stances as done by COMPOSE.V1 (with α-shapes) and COMPOSE.V2 (with GMM) on

this imbalanced dataset introduces a bias in the decision boundary away from the unla-

beled data at the next time-step. This bias makes it difficult for the semi-supervised learning

71

www.manaraa.com

Figure 15. Four different snapshots of 5CVT dataset

(SSL) algorithm to cluster the data properly. When using all instances from the previous

time-step as the labeled information – as done in FAST COMPOSE – the labeled instances

are closer to the unlabeled data, reducing or eliminating the aforementioned bias, and al-

lows FAST COMPOSE to perform better than either of the first two versions [66]. That

said, FAST COMPOSE is not the best performing algorithm on this dataset; that honor

goes to MClassification.

Since the dataset is synthetic, we recreated a balanced version of this dataset, and

reevaluated all versions of COMPOSE. Figure 16 shows the accuracy of all three versions

of COMPOSE. We now see that all versions perform equally well giving an average accu-

racy around 89%. Furthermore, the class balance helps FAST COMPOSE to perform even

better and closer to MClassification than with the imbalanced version of the data.

Computational complexity (as measured in seconds for runtime) among the three

versions of COMPOSE as well as other algorithms also provide some useful and interest-

72

www.manaraa.com

0 5 10 15 20 25 30 35 40

Time

75

80

85

90

95

100

A
c
c
u

ra
c
y

COMPOSE (Alpha-shape)

COMPOSE (GMM)

FAST COMPOSE

Figure 16. Accuracy Comparison of COMPOSE on balanced 5CVT dataset

ing results. As shown in Table 5, COMPOSE (α-shape) is found to be the second worst

algorithm in terms of computational complexity after MClassification, and performs sig-

nificantly worse than all other algorithms except SCARGC (1-NN), MClassification and

LEVELIW (with no significant difference among the last four). For COMPOSE (α-shape),

the curse of dimensionality is the biggest bottleneck as can be seen from the significantly

large computation time it takes for two datasets with even modestly high dimensionality: a

5-dimensional dataset UG 2C 5D and the 10-dimensional real world dataset keystroke.

We can easily see that the computational complexity of COMPOSE (α-shape) increases

exponentially with dimensionality, and therefore is impractical to use for large dimensional

datasets. With respect to execution time, COMPOSE (GMM) shows significant improve-

ment over COMPOSE (α-shape), SCARGC (1-NN), and MClassification as seen in Ta-

ble 5. FAST COMPOSE shows significant improvement over all other algorithms except

COMPOSE (GMM) and SCARGC (SVM). We observe that FAST COMPOSE also per-

forms consistently better on most datasets with respect to computation time, providing the

lowest rank as shown in Table 3. FAST COMPOSE thus becomes the fastest algorithm

known in the literature to handle extreme verification latency leaving behind SCARGC

(SVM) which was previously known to be the fastest algorithm in literature per claims

73

www.manaraa.com

made in [15].

In addition to classification accuracy and runtime based computational complexity,

we also investigated the parameter sensitivity of these algorithms. Parameter sensitivity

analysis measures the robustness of a given algorithm’s performance in response to changes

in the algorithm’s most influential free parameters. In general, we prefer stable algorithms,

whose performances do not change wildly for modest changes in their free parameters.

COMPOSE.V1 and COMPOSE.V2 employ two modules, namely core support ex-

traction and semi-supervised learning (SSL), each requiring their own free-parameters. The

primary free parameters for COMPOSE-V1 are α-shape detail level α, α-shape compaction

percentage CP , and the number of clusters k for cluster and label SSL algorithm. COM-

POSE.V2 requires the number of Gaussian mixtures components K, compaction percent-

age parameter CP , and number of clusters parameter k for cluster and label SSL algo-

rithm. All these parameters normally require fine tuning in order to give good results.

COMPOSE.V3, i.e. FAST COMPOSE, is introduced primarily to reduce the computation

complexity of the algorithm, but it also reduces the number of free-parameters by removing

the core support extraction module, and hence requires only the number of clusters param-

eter k. Therefore we perform the sensitivity analysis of COMPOSE with respect to this

parameter common to all three versions of COMPOSE. Table 8 shows the results obtained

by COMPOSE using cluster-and-label, where for each dataset, we provide the COMPOSE

performance with the optimal k value, as well as k incorrectly chosen by just ”1.” This ±1

represents the smallest possible change in k around its optimal value. For example, if the

optimal value is k = 4, the three values of k used for comparison are k = 3, k = 4, and

k = 5. When optimal k is two, the selection of k = 1 is, of course, meaningless, as k = 1

74

www.manaraa.com

would result in all instances being classified into the same class. Hence, such cases are

indicated as N/A in Table 8. We observe that the cluster-and-label is able to identify the

structure in the data from few labeled instances, and it does so reasonably well even when

there is overlap among the clusters. However, this performance is subject to correct choice

of the number of clusters k in the data, to which it tends to be rather sensitive, and in most

datasets changing the value of k from the optimal value even just by 1, significantly and

catastrophically reduces the average accuracy for that dataset.

In summary, then, there is no statistically significance difference among any of the

algorithms with respect to classification accuracy (though FAST COMPOSE consistently

perform better). FAST COMPOSE and COMPOSE with GMM are significantly better

in terms of runtime, and LEVELIW appears to be more robust with respect to parameter

variations among other algorithms.

5.2 Analysis of SCARGC

We included two versions of SCARGC, one using nearest neighborhood (1NN) and

the other using support vector machines (SVM), neither of which provided any significant

difference over any of the other algorithms in terms of classification accuracy, as shown

in table 4. However the dataset 5CV T is also a useful case to explain the behavior of

this algorithm in detail. Recall that the original version of this dataset as provided in the

repository contains class imbalance, which causes both versions of the SCARGC algorithm

to catastrophically fail on this dataset as shown in Figure 17. Again we reevaluated the

performance of both versions of SCARGC on the recreated balanced version of the data

as shown in Figure 17. We observe that class balance helps both versions of SCARGC to

75

www.manaraa.com

0 5 10 15 20 25

Time

30

40

50

60

70

80

90

A
c
c
u

ra
c
y SCARGC (1-NN)

SCARGC (SVM)

SCARGC (1-NN) (balanced version)

SCARGC (SVM) (balanced version)

Figure 17. Classification accuracy comparison of SCARGC on 5CVT dataset

perform well, the same behavior we already observed with all versions of COMPOSE on

this dataset.

With respect to the execution time, SCARGC (1-NN) does not show significant

improvement over any algorithm, while SCARGC (SVM) shows significant improvement

over COMPOSE (α-shape), and MClassification as shown in table 5. FAST COMPOSE

showed a significant improvement over SCARGC (1-NN) as previously discussed, and

as can also be seen in table 5: the computational performance of FAST COMPOSE is

not significantly better than SCARGC (SVM), however, FAST COMPOSE does take less

computation time on almost every dataset as compared to SCARGC (SVM).

SCARGC has three input parameters, initial labeled data, pool size and the number

of clusters. The authors in the paper [15] show that SCARGC is robust to the change in the

values of the initial labeled data and the pool size (the number of instances in each batch

evaluated by the algorithm at any given time). Therefore, we fixed and set the pool size

equal to the batch size (drift interval shown in Table 1) used in all versions of COMPOSE

76

www.manaraa.com

and LEVELIW to ensure the fairness in comparison. As with all algorithms, we also assume

that the entire initial batch of the data is labeled, followed by all unlabaled data. This allows

all algorithm to see the exact same data in each batch.

The third parameter, the number of clusters k, is the more useful one to test with

respect to the parameter sensitivity. For the sensitivity analysis, we followed a similar pro-

cedure as we did for COMPOSE, and we evaluated SCARGC using the optimal k value,

as well as k incorrectly chosen by just ”1”, as shown in Table 6. We observed that perfor-

mance shown by SCARGC is also quite sensitive to correct choice of this parameter, as the

performance drops dramatically and significantly for incorrect choices of k, particularly for

the cases with class overlap. Overestimating the value of k from its optimal value does not

hurt the performance much for those datasets that do not have class overlap, though - per-

haps not surprisingly - underestimating this value does negatively impact the classification

accuracy.

5.3 Analysis of MClassification

MClassification behaves similarly to other algorithms in terms of the classification

accuracy when averaged across all datasets, and does not provide any significant difference

as shown in Table 4. Looking in detail into its behavior for three specific datasets, namely

FG 2C 2D, MG 2C 2D, and 5CV T is however more useful. FG 2C 2D is the dataset

where two bi-dimensional classes are represented as four Gaussians. Figure 18 illustrates

the behavior of this dataset over time, which shows that one class traverses the perimeter of

the other class before diagonally criss-crossing the other class resulting in a complete class

overlap.

77

www.manaraa.com

Figure 18. Six Snapshots of FG 2C 2D data

Figure 19 shows the accuracy obtained on this dataset by the four algorithms under

consideration. All versions of COMPOSE and both versions of SCARGC show similar

accuracy on this dataset. We only include FAST COMPOSE and SCARGC (1-NN) in the

comparison result for simplicity. We note that after time-step 30, the average accuracy for

MClassification drops down to 40%, a significant drop in the average accuracy compared

to other algorithms. We find that the three Gaussians which are representing one class

in the data have their means close to each other initially, and evolve without changing

their mean positions too much, but after timestep 30 these three Gaussians start drifting in

different directions forming three different clusters. More importantly, the fourth Gaussian

representing the other class also starts drifting towards the opposite direction traversing

the opposing class diagonally, resulting in a complete class overlap. This sudden change

78

www.manaraa.com

0 10 20 30 40 50 60 70 80 90 100

Time

0

20

40

60

80

100

A
c
c
u

ra
c
y

MCLASSIFICATION

LEVEL-IW

FAST-COMPOSE

SCARGC (1-NN)

Figure 19. Accuracy of Algorithms on FG 2C 2D data

in the positions and parameters of the distributions representing two different classes co-

occurring with the overlap of these classes appears to be the reason for the significant drop

in the average accuracy for MClassification. The other algorithms do see a small drop

in their performance when the overlap occurs (as expected), but they do not lose track of

the clusters with the sudden change in the positions and parameters of the distributions

representing classes.

MG 2C 2D dataset also contains two classes in two dimensions, where the dis-

tribution of one class (indicated in blue) starts with two modes, whereas that of the other

class has a unimodal distribution. The positions and the parameters of the distribution of

the classes change over time. The evolving behavior of this dataset is shown in Figure 20

for six different time steps, which indicates that the red class splits into a bi-modal distri-

bution, followed later by merging back into a unimodal distribution, while traversing the

blue class perimeter (recall that APT cannot handle such cases).

79

www.manaraa.com

Figure 20. Six Snapshots of MG 2C 2D data

Figure 21 illustrates the accuracy obtained from different algorithms, which shows

that between time-steps 30 to 70, the accuracy for MClassification drops down from 100%

to an average of 65%. The reason for this drop is again attributed to the sudden change in

the modes or clusters representing two classes of the data initially, co-occurring with the

overlap of classes. The other algorithms albeit seeing a drop in their performance because

of the significant overlap, do not lose track of the distributions even those distributions

diverge into multiple modes. The reason MClassification recovers after time step 70 is that

now the initial modes or clusters (two modes for blue class and the other class with one

mode) start representing the classes again, and more importantly these modes also start to

separate.

5CV T is the 5-class vertical translation data mentioned before and shown in Fig.

80

www.manaraa.com

0 10 20 30 40 50 60 70 80 90 100

Time

0

20

40

60

80

100

A
c
c
u

ra
c
y

MCLASSIFICATION

LEVEL-IW

FAST-COMPOSE

SCARGC (1-NN)

Figure 21. Accuracy of Algorithms on MG 2C 2D data

15. Curiously, Table 2 shows that MClassification is the only algorithm that works well

on the original imbalanced version of this dataset, showing the usefulness and practical

importance of this algorithm for the scenarios possessing slight imbalance among classes.

With respect to the execution time, this algorithm appears to be the worst algorithm

(other than APT), providing the highest rank (highest being the worst and lowest being the

best) as shown in Table 3. As shown in Table 5, MClassification takes significantly longer

to run than all other algorithms, except COMPOSE with α-shape (and perhaps APT) with

which the difference is not significant.

From the parameter sensitivity perspective, we first note that MClassification is

introduced by the same authors of SCARGC as an alternative that is claimed to use a pa-

rameter that is less sensitive and requires no prior knowledge to tune. The only parameter

this algorithms uses is the maximum micro-cluster radius threshold r, a user-defined pa-

rameter that the authors claim is quite robust. The authors further argue that the value r =

0.1 works generally well in all cases. In order to test this claim, we evaluated this algorithm

on 8 different values of the parameter r, i.e., 0.01, 0.05, 0.1, 0.2, 0.5, 1, 1.5 and 2, whose

81

www.manaraa.com

results are given in the Table 7. For each of the datasets, three different values of r were

used, representing the smallest possible value of 0.01 and largest value of r among all val-

ues on which the algorithm starts seeing a drop in its performance, and the claimed default

value of r = 0.1. We observed that for all datasets except MG 2C 2D, the lower values of

0.01 and 0.05 do not make any difference to the performance from the optimal value. How-

ever, the performance does not remain consistent when the values greater than the optimal

value are used: increasing the threshold value decreases the performance. The performance

decreases more dramatically for the datasets that possess significant class overlap.

5.4 Analysis of LEVELIW

The average classification accuracy shown by LEVELIW for all datasets was, as pre-

viously mentioned, not statistically significantly different from the remaining algorithms as

shown in Table 4. With respect to the execution time, LEVELIW is significantly slower com-

pared to FAST COMPOSE only, as shown in Table 5. As with other algorithms, additional

insights can be obtained by further investigating the classification accuracy of LEVELIW on

certain datasets. More specifically, we observe that LEVELIW performs rather poorly for

datasets with significant between-class overlap, as can be seen from Table 2. The reason for

this relatively poor performance can be traced to the assumptions made by domain adapta-

tion algorithms: the significant between-class overlap coupled with a drifting environment

ultimately leads to a significant change in the posterior probability distribution p(y|x) of

classes, violating one of the covariance shift assumptions behind domain adaptation algo-

rithms in general, and LEVELIW in particular. We note that the ability of other algorithms

to perform well even under significant between-class overlap is in fact due to a crucial piece

82

www.manaraa.com

of information provided to them, through one of their free-parameters.

To better understand the underlying behavior of LEVELIW, let’s consider a specific

dataset as a case study, UG 2C 2D, where two unimodal bi-dimensional Gaussians circle

around each other. This dataset features class overlap at all time steps, but with varying

degree, some near complete overlap. Figure 22 illustrates the behavior of this dataset at six

different time snapshots.

Figure 22. UG 2C 2D data for six different snapshots

This is an interesting dataset and explains the performance and behavior of LEVELIW

very clearly, as shown in Figure 23. The two classes cross over each other with significant

overlap at around time step 60. At this time step, all algorithms, including LEVELIW, suf-

fer a steep drop in their classification performance, which is expected. After time step 70,

83

www.manaraa.com

0 10 20 30 40 50 60 70 80 90 100

Time

0

20

40

60

80

100

A
c
c
u

ra
c
y

MCLASSIFICATION

LEVEL-IW

FAST-COMPOSE

SCARGC (1-NN)

Figure 23. Accuracy of algorithms on UG 2C 2D data

the two class distributions start pulling away from each other. Unlike other algorithms,

LEVELIW is unable to recover when the class distributions separate from other. COM-

POSE, SCARGC and MClassification can all recover, but only when the correct or optimal

value of their primary free parameter is provided. For all three algorithms, the primary free

parameter ultimately controls the number of classes / clusters within the data. In this par-

ticular example, knowing that the data includes two clusters allow the underlying cluster

analysis based procedures for all three algorithms to correctly detect the two classes based

on cluster separation when the clusters start moving apart from each other. As Tables 6,7,

and 8 show, none of these algorithms can recover from such a severe overlap, however,

unless their primary free parameter is correct. This outcome, of course, is not surpris-

ing, nor interesting given the complete class overlap (even the supervised Bayes classifier

would fail catastrophically in this scenario). What is perhaps more interesting to explore

is why LEVELIW cannot recover even when its free parameter is chosen correctly, yet it is

surprisingly more stable and consistent for various values of its free parameter.

The free parameter for LEVELIW is the value of the kernel width σ as used in

84

www.manaraa.com

Gaussian kernel. The kernel width does not provide any direct information on the number

of clusters, but rather on the overall smoothness of the decision boundaries. Such infor-

mation, while not terribly useful after a complete overlap, provides more protection and

less sensitivity to minor or even moderate changes in its value. To see this effect, a pa-

rameter sweep range was chosen to cover a range commonly known to work well in other

algorithms that use Gaussian kernels, and include the values of 0.01, 0.1, 0.2, 0.5, 1, 1.2,

1.5, 2, and 5. In Table 9, we show the performance of LEVELIW for each of the datasets

with three different values of σ, representing the smallest and largest values of σ on which

the algorithm performs well, as well as an additional value in the middle of the two. We

observe that LEVELIW is surprisingly robust to such wide fluctuations of σ values of typi-

cally five fold, and sometimes as wide as an order of magnitude difference. This outcome

shows the consistent and stable performance of LEVELIW, its most prominent advantage

over remaining algorithms.

5.5 Analysis on two Additional Real World Datasets

The Keystroke dataset that was included in all aforementioned experiments is the

only real world dataset in the original benchmark. That benchmark was used in part because

it was used by other algorithms, allowing a fair comparison of our results to those reported

in their respective publications [13–16, 66]. We had access to two additional datasets which

we used separately, on which we evaluated all four main groups of algorithms. In this

section we discuss the behavior of these algorithms on these two additional real world

datasets, namely Weather and Traffic datasets. For this analysis, among three versions of

COMPOSE, we use COMPOSE.V3 (FAST COMPOSE), because of its fewer parameter

85

www.manaraa.com

requirements and reduced computational complexity, and in general we now know that it

works as well or better than the previous two versions.

The Weather dataset is created by our group in one of our prior work [13], and is

based on the raw data obtained from the National Oceanic and Atmospheric Administra-

tion (NOAA) department. The raw data was collected over a 50-year span from Offutt

Air Force Base in Bellevue, Nebraska. Eight features (temperature, dew point, sea-level

pressure, visibility, average wind speed, max sustained wind speed, and minimum and

maximum temperature) are used to determine whether each day experienced precipitation

(rain) or not. The data set contains 18,159 daily readings of which 5,698 are rain and the

remaining 12,461 are no rain. Hence this data has moderate class imbalanced with 68.62%

of the instances belonging to class 1 while 31.38% of the instances belonging to the other

class. Data were grouped into 49 batches of one-year intervals, each containing 365 in-

stances (days); the remaining data were placed into the fiftieth batch as a partial year. The

imbalance inherent in the overall data, combined with consistent significant class overlap

caused all algorithms to classify all data to one class, giving (a false sense of) accuracy

of 69% on this dataset as shown in Figure 24. Therefore, the results on this dataset are

inconclusive.

The second real dataset we use in our analysis is the Traffic dataset, which was

first introduced in [70]. This dataset consists of 5,412 instances, 512 real attributes and 2

classes, representing whether a traffic intersection is busy (has cars in the intersection) or

empty. The images in this dataset are captured from a fixed traffic camera continuously

observing an intersection over a two-week period. Some sample images of this dataset are

shown in Figure 25.

86

www.manaraa.com

0 5 10 15 20 25 30 35 40 45 50

TIME STEPS

45

50

55

60

65

70

75

80

85

90

95

100

A
C

C
U

R
A

C
Y

COMPOSE(GMM)

FAST COMPOSE

LEVEL-IW

SCARGC

MClassification

Figure 24. Accuracy of algorithms on real world weather data

Figure 25. Sample images of traffic scenes streaming from a traffic camera

The concept drift in this dataset is due to the ambient changes in the scene that

occur because of the variations in illumination, shadows, fog, snow, or even light saturation

from oncoming cars, etc. We observe that this dataset also possesses imbalance but not as

87

www.manaraa.com

significant as the Weather dataset: out of 5,412 instances, 3,168 instances (58.54%) belong

to class 1, while 2,244 instances (41.46%) belong to the other class. While the overall data

does not have significant imbalance inherent in it, dividing the data into batches does add

significant imbalance to certain batches of data. The imbalance becomes increasingly more

significant with the number of batches.

Figure 26 shows the performance of each algorithm on this dataset with different

number of batches, where Figure 26(a) represents the classification accuracy of SCARGC

for 5, 10, 15, 18, and 20 batches. Figure 26(b), Figure 26(c), and Figure 26(d) show the

same information for MClassification, FAST COMPOSE and LEVELIW, respectively. We

observe that all algorithms show around 76% classification accuracy, so long as the number

of batches is less than or equal to 18.

88

www.manaraa.com

2 4 6 8 10 12 14 16 18 20

BATCH NUMBERS

0

10

20

30

40

50

60

70

80

90

100

A
C

C
U

R
A

C
Y

 (
S

C
A

R
G

C
)

SCARGC-Trafficdata-5batches

SCARGC-Trafficdata-10batches

SCARGC-Trafficdata-15batches

SCARGC-Trafficdata-18batches

SCARGC-Trafficdata-20batches

(a) SCARGC performance

2 4 6 8 10 12 14 16 18 20

BATCH NUMBERS

0

10

20

30

40

50

60

70

80

90

100

 A

C
C

U
R

A
C

Y

 (
M

C
la

s
s
if
ic

a
ti
o
n
)

MClassification-Trafficdata-5batches

MClassification-Trafficdata-10batches

MClassification-Trafficdata-15batches

MClassification-Trafficdata-18batches

MClassification-Trafficdata-20batches

(b) MClassification performance

2 4 6 8 10 12 14 16 18 20

BATCH NUMBERS

0

10

20

30

40

50

60

70

80

90

100

A
C

C
U

R
A

C
Y

 (
F

A
S

T
 C

O
M

P
O

S
E

)

FAST COMPOSE-Trafficdata-5batches

FAST COMPOSE-Trafficdata-10batches

FAST COMPOSE-Trafficdata-15batches

FAST COMPOSE-Trafficdata-18batches

FAST COMPOSE-Trafficdata-20batches

(c) FAST COMPOSE performance

2 4 6 8 10 12 14 16 18 20

BATCH NUMBERS

0

10

20

30

40

50

60

70

80

90

100

A
C

C
U

R
A

C
Y

 (
L
E

V
E

L
-I

W
)

LEVEL-IW-Trafficdata-5batches

LEVEL-IW-Trafficdata-10batches

LEVEL-IW-Trafficdata-15batches

LEVEL-IW-Trafficdata-18batches

LEVEL-IW-Trafficdata-20batches

(d) LEVELIW performance

Figure 26. Accuracy of algorithms on Traffic dataset using various batch sizes

89

www.manaraa.com

Table 2

Average classification accuracy

DATASETS
COMPOSE

(α-shape)

COMPOSE

(GMM)

FAST

COMPOSE

SCARGC

(1-NN)

SCARGC

(SVM)
MClassification LEVELIW

1CDT 99.96(2) 99.85(5) 99.97(1) 99.69(7) 99.72(6) 99.89(4) 99.92(3)
1CHT 99.60(2) 99.34(6) 99.57(3) 99.69(1) 99.27(7) 99.38(5) 99.52(4)
1CSurr 90.95(5) 89.72(6) 95.64(1) 94.53(3) 94.99(2) 85.15(7) 91.30(4)
2CDT 96.58(1) 95.92(2) 95.17(4) 87.71(6) 87.82(5) 95.23(3) 58.32(7)
2CHT 90.39(1) 89.63(2) 89.41(3) 83.62(5) 83.39(6) 87.93(4) 52.15(7)
4CE1CF 93.92(5) 93.90(6) 93.95(4) 94.04(3) 92.79(7) 94.38(2) 97.74(1)
4CR 99.99(2.5) 99.99(2.5) 99.99(2.5) 99.96(6) 98.94(7) 99.98(5) 99.99(2.5)
4CRE-V2 92.59(1) 92.30(3) 92.46(2) 91.34(6) 91.46(5) 91.59(4) 24.10(7)
5CVT 57.97(3) 45.10(6) 81.33(2) 46.26(4) 46.19(5) 88.30(1) 33.10(7)
FG 2C 2D 87.90(6) 95.50(5) 95.58(3) 95.51(4) 95.60(2) 62.48(7) 95.71(1)
GEARS 2C 2D 90.98(7) 95.83(3) 91.26(6) 95.99(2) 95.81(4) 94.73(5) 97.74(1)
MG 2C 2D 93.12(2) 93.20(1) 93.02(3) 92.92(5) 92.94(4) 80.58(7) 85.44(6)
UG 2C 2D 95.63(3) 95.71(1) 95.61(5) 95.65(2) 95.62(4) 95.28(6) 74.34(7)
UG 2C 3D 94.92(3) 95.20(1) 95.12(2) 94.83(5) 94.91(4) 94.72(6) 64.69(7)
UG 2C 5D 92.07(2) 92.13(1) 91.99(3) 91.38(4) 90.94(6) 91.25(5) 80.17(7)
keystroke 84.31(7) 87.21(5) 85.92(6) 88.07(3.5) 88.07(3.5) 90.62(1) 90.56(2)
Average Rank

(lower is bet-

ter)

3.2813 3.4688 3.1563 4.1563 4.8438 4.5000 4.5938

The only minor exception is MClassification algorithm, which can perform equally

well even if the data is divided into more than 18 batches (for instance 20 batches as seen

in Figure 26(b)). We attribute this behavior to the online nature of this algorithm, as it can

process data one example or instance at a time, and hence the algorithm is not bothered

by the batch size. Similar behavior was also observed when MClassification was evaluated

on the original version of 5CV T benchmark data. With all other algorithms, the problem

with batch size can be linked to the class imbalance: If the data is split into 20 batches,

ten batches contain on average 68% and 32% imbalance among classes, while the other

ten batches contain imbalance on average equal to the imbalance of the overall data i.e.

58.54% and 41.46%. These results further confirm a mutual shortcoming of concept drift

90

www.manaraa.com

algorithms that are asked to work under extreme verification latency that they are sensitive

to class imbalance.

Table 3

Average execution time (in seconds)

DATASETS
COMPOSE

(α-shape)

COMPOSE

(GMM)

FAST

COMPOSE

SCARGC

(1-NN)

SCARGC

(SVM)
MClassification LEVELIW

1CDT 19.18(6) 4.21(3) 1.15(1) 10.20(4) 2.50(2) 64.75(7) 15.02(5)
1CHT 19.76(6) 4.04(3) 1.17(1) 10.76(4) 3.29(2) 62.36(7) 15.34(5)
1CSurr 72.84(6) 7.32(2) 2.53(1) 51.78(5) 16.40(3) 220.49(7) 43.83(4)
2CDT 20.21(6) 2.89(2) 1.46(1) 10.00(4) 3.34(3) 62.48(7) 15.71(5)
2CHT 19.59(6) 3.55(3) 1.41(1) 10.09(4) 2.89(2) 60.77(7) 15.79(5)
4CE1CF 241.16(6) 44.14(2) 8.41(1) 210.97(5) 134.56(3) 775.59(7) 137.82(4)
4CR 213.51(6) 55.90(2) 12.04(1) 91.22(4) 56.22(3) 608.00(7) 148.32(5)
4CRE-V2 216.55(5) 34.82(2) 6.44(1) 280.27(6) 41.51(3) 641.46(7) 147.81(4)
5CVT 29.09(5) 6.16(3) 2.52(1) 40.08(6) 6.08(2) 89.02(7) 19.21(4)
FG 2C 2D 229.34(5) 16.04(2) 3.80(1) 587.19(6) 54.58(3) 870.12(7) 185.77(4)
GEARS 2C 2D 237.24(5) 14.45(2) 2.50(1) 609.95(7) 26.91(3) 497.87(6) 186.42(4)
MG 2C 2D 228.96(5) 15.38(2) 4.26(1) 583.76(6) 53.44(3) 740.75(7) 190.81(4)
UG 2C 2D 115.30(5) 16.92(2) 3.45(1) 152.24(6) 23.27(3) 362.48(7) 72.69(4)
UG 2C 3D 936.18(7) 15.64(2) 2.60(1) 747.96(5) 62.28(3) 881.07(6) 176.53(4)
UG 2C 5D 2138.39(7) 15.97(2) 2.65(1) 849.03(5) 265.92(4) 977.53(6) 176.84(3)
keystroke 31761.70(7) 2.02(4) 1.16(3) 0.82(2) 0.68(1) 6.62(6) 2.30(5)
Average Rank

(lower is bet-

ter)

5.8125 2.3750 1.1250 4.9375 2.6875 6.7500 4.3125

Table 4

Statistical significance at α = 0.05 for classification accuracy

COMPOSE(α-

shape)
COMPOSE(GMM) FAST COMPOSE SCARGC(1-NN) SCARGC(SVM) MClassification LEVELIW

COMPOSE(α-

shape)
n/a

COMPOSE(GMM) n/a

FAST COMPOSE n/a

SCARGC(1-NN) n/a

SCARGC(SVM) n/a

MClassification n/a

LEVELIW n/a

91

www.manaraa.com

Table 5

Statistical significance at α = 0.05 for execution time

COMPOSE(α-

shape)
COMPOSE(GMM) FAST COMPOSE SCARGC(1-NN) SCARGC(SVM) MClassification LEVELIW

COMPOSE(α-

shape)
n/a ↑ ↑ ↑

COMPOSE(GMM) ← n/a ← ←

FAST COMPOSE ← n/a ← ← ←

SCARGC(1-NN) ↑ ↑ n/a

SCARGC(SVM) ← n/a ←

MClassification ↑ ↑ ↑ n/a ↑

LEVELIW ↑ ← n/a

Table 6

Accuracy with three different values of k (SCARGC)

DATASETS
Reduced k (Accu-

racy)

Optimal k (Accu-

racy)

Increased k (Accu-

racy)
1CDT N/A k=2 (99.72) k=3 (99.72)
1CHT N/A k=2 (99.27) k=3 (99.22)
1CSurr k=4 (91.68) k=5 (94.99) k=6 (91.66)
2CDT N/A k=2 (87.82) k=3 (51.99)
2CHT N/A k=2 (83.39) k=3 (67.48)
4CE1CF k=4 (2.15) k=5 (92.79) k=6 (49.67)
4CR k=3 (25.33) k=4 (98.94) k=5 (98.94)
4CRE-V2 k=3 (24.82) k=4 (91.46) k=5 (39.72)
FG 2C 2D k=3 (68.49) k=4 (95.60) k=5 (94.91)
GEARS 2C 2D N/A k=2 (95.81) k=3 (88.06)
MG 2C 2D k=3 (64.87) k=4 (92.94) k=5 (82.76)
UG 2C 2D N/A k=2 (95.62) k=3 (57.19)
UG 2C 3D N/A k=2 (94.91) k=3 (80.20)
UG 2C 5D N/A k=2 (90.94) k=3 (75.08)
keystroke k=9 (57.43) k=10 (88.07) k=11 (58.07)

92

www.manaraa.com

Table 7

Accuracy with three different values of r (MClassification)

DATASETS lowest r (Accuracy) Middle r (Accuracy) Highest r (Accuracy)
1CDT r=0.01(99.85) r=0.1(99.89) r=2(97.85)
1CHT r=0.01(99.23) r=0.1(99.38) r=2(92.97)
1CSurr r=0.01(84.80) r=0.1(85.15) r=0.5(48.67)
2CDT r=0.01(94.76) r=0.1(95.23) r=0.5(55.84)
2CHT r=0.01(86.50) r=0.1(87.93) r=0.5(56.37)
4CE1CF r=0.01(94.59) r=0.1(94.38) r=2(96.21)
4CR r=0.01(99.98) r=0.1(99.98) r=1(23.02)
4CRE-V2 r=0.01(91.21) r=0.1(91.59) r=0.5(27.80)
FG 2C 2D r=0.01(59.20) r=0.1(62.48) r=0.2(55.84)
GEARS 2C 2D r=0.01(95.23) r=0.1(94.73) r=0.3(93.90)
MG 2C 2D r=0.01(51.10) r=0.1(80.58) r=0.2(74.41)
UG 2C 2D r=0.01(95.12) r=0.1(95.28) r=0.5(51.87)
UG 2C 3D r=0.01(94.57) r=0.1(94.72) r=0.5(52.44)
UG 2C 5D r=0.01(91.31) r=0.1(91.25) r=1(68.17)
keystroke r=0.01(90.62) r=0.1(76.90) r=0.2(73.86)

Table 8

Accuracy with three different values of k (COMPOSE)

DATASETS
Reduced k (Accu-

racy)

Optimal k (Accu-

racy)

Increased k (Accu-

racy)
1CDT N/A k=2 (99.85) k=3 (99.76)
1CHT N/A k=2 (99.34) k=3 (98.72)
1CSurr k=3 (85.58) k=4 (94.55) k=5 (91.52)
2CDT N/A k=2 (95.91) k=3 (52.91)
2CHT N/A k=2 (89.63) k=3 (77.33)
4CE1CF k=4 (78.96) k=5 (93.90) k=6 (94.66)
4CR k=3 (74.88) k=4 (99.98) k=5 (99.98)
4CRE-V2 k=3 (25.13) k=4 (92.30) k=5 (22.78)
FG 2C 2D k=3 (68.91) k=4 (95.50) k=5 (95.44)
GEARS 2C 2D N/A k=2 (95.82) k=3 (87.99)
MG 2C 2D k=3 (65.32) k=4 (93.20) k=5 (92.07)
UG 2C 2D N/A k=2 (95.71) k=3 (56.28)
UG 2C 3D N/A k=2 (95.20) k=3 (91.46)
UG 2C 5D N/A k=2 (92.12) k=3 (88.03)
keystroke k=9 (68.62) k=10 (87.21) k=11 (81.56)

93

www.manaraa.com

Table 9

Accuracy with three different values of sigma (LEVELIW)

DATASETS
lowest sigma (Accu-

racy)

Middle sigma (Accu-

racy)

Highest sigma (Ac-

curacy)
1CDT 0.2 (99.91) 1 (99.91) 2 (99.92)
1CHT 0.2 (99.40) 1 (99.42) 2 (99.51)
1CSurr 1 (91.30) 1.5 (90.00) 2 (87.79)
2CDT 0.2 (58.32) 0.5 (50.32) 1 (50.48)
2CHT 0.2 (50.10) 0.5 (50.89) 1 (52.15)
4CE1CF 0.2 (97.74) 0.5 (97.12) 1.5 (92.40)
4CR 0.2 (99.99) 1 (99.99) 2 (99.99)
4CRE-V2 0.2 (20.96) 0.5 (20.84) 1 (24.10)
FG 2C 2D 0.2 (95.71) 0.5 (86.41) 1 (94.28)
GEARS 2C 2D 0.2 (97.73) 1 (95.28) 2 (95.36)
MG 2C 2D 0.2 (78.03) 0.5 (78.21) 1.2 (85.44)
UG 2C 2D 0.2 (70.61) 0.5 (71.81) 1 (74.33)
UG 2C 3D 0.1 (61.21) 1 (64.30) 2 (64.68)
UG 2C 5D 0.5 (77.67) 1 (80.07) 1.5 (80.17)
keystroke 0.5 (88.12) 1 (90.56) 2 (89.43)

94

www.manaraa.com

Chapter 6

Conclusion and Future Work

This thesis introduces and describes two new approaches to learn from a nonsta-

tionary (drifting) environment experiencing extreme verification latency, and provides a

comprehensive evaluation of existing approaches with respect to classification accuracy,

computational complexity and parameter sensitivity.

In a nonstationary streaming environment, the nonstationary data, drawn from a

drifting distribution, arrive in a streaming manner. The extreme verification latency places

an additional constraint that beyond an initial batch, the entire data stream is assumed un-

labeled. The first approach developed in this effort is a modification of the previously

developed COMPOSE algorithm that significantly increases the execution speed of the

algorithm. The modified version of COMPOSE, named FAST COMPOSE, is the origi-

nal COMPOSE algorithm whose core support extraction step is replaced by using all of

the instances labeled by the SSL in the previous time-step as the new labeled data to be

used for the next time-step’s SSL step. This simplification of the algorithm produces im-

proved results in both classification accuracy (albeit not at a statistically significant level)

and execution time (at a statistically significant level compared to original α-shape based

COMPOSE and other competing non-COMPOSE based algorithms). The second approach

developed as part of this thesis is a modification of the importance weighted least squares

probabilistic classifier so that it can work within a streaming data environment and when

there is extreme verification latency. The proposed approach is called Learning Extreme

VErification Latency with Importance Weighting (LEVELIW). This approach was devel-

oped to determine whether domain adaptation approaches that are intended for single time

95

www.manaraa.com

step training - test distribution mismatch problems can also be used in the streaming data

setting. We found that while the algorithm does not provide any significant improvement on

classification accuracy, it does provide improved stability - compared to other algorithms -

over a range of values in the selection of its free-parameter.

One of most important contribution of this work is the comprehensive and com-

parative analysis of the available algorithms in the literature to handle extreme verification

latency from three different perspectives: classification accuracy, computational complex-

ity and parameter sensitivity. Our goal in this task has been to determine and describe the

relative strengths and weaknesses of these algorithms, and point out different cases and

scenarios where one algorithm is better suited over the others.

The original COMPOSE algorithms, COMPOSE with α-shape (COMPOSE.V1),

was a significant contribution to the field when it was first proposed, as it was the only algo-

rithm capable at the time to address the problem of learning in nonstationary environments

in the presence of extreme verification latency with no restrictions on the nature of the data

distribution. However, that capability came at a steep price: the algorithm is computation-

ally very expensive (though still significantly more efficient than the Arbitrary Population

subTracker (APT) as well as the MClassification). The algorithm also provided to be quite

sensitive to the choice of its primary free parameters. Despite these shortcomings, and

despite several other competing algorithms developed since then, the original COMPOSE

algorithm remains competitive with respect to classification accuracy. The second version

of COMPOSE, COMPOSE with GMM (COMPOSE.V2), replaced the α-shape based ap-

proach for determining the core supports with a Gaussian mixture model based density

estimation module that dramatically increased its computational efficiency while retain-

96

www.manaraa.com

ing the classification accuracy of COMPOSE.V1 The latest version of COMPOSE, FAST

COMPOSE proposed in this work, further improves the classification accuracy as well as

the computational efficiency compared to all other algorithms. One remaining issue with

FAST COMPOSE, however, is its sensitivity to the choice of its primary free parameter,

the number of clusters in the cluster-and-label based SSL algorithm used in its core support

computation.

SCARGC was developed as a competing algorithm to the original COMPOSE with

the primary advantage of better computational efficiency. SCARGC with nearest neighbor

(1NN) shows comparable accuracy to other algorithms and is less computationally expen-

sive compared to COMPOSE (α-shape), and MClassification (but not against COMPOSE

with GMM or FAST COMPOSE), while it too is also sensitive to the choice of its pri-

mary free parameter – number of clusters k in k-means clustering based subroutine it uses.

SCARGC with SVM while perhaps reasonable with respect to computational burden, was

found to be the worst (highest rank) in terms of classification accuracy. SCARGC with

SVM retains the high parameter sensitivity as with SCARGC (1NN).

MClassification shows comparable accuracy performance to other algorithms but

appears to be the worst algorithm in computationally complexity (other than APT), requir-

ing more runtime than even COMPOSE with α-shape on most datasets. This behavior is

attributed to its online nature. In fact, MClassification is the only algorithm that is capable

of processing the data in an online manner, a distinct advantage in a streaming environment,

but that advantage appears to be unrealized or wasted due to the heavy computational bur-

den. This algorithm is also quite sensitive to its primary free parameter.

LEVELIW, as with other algorithms, performed comparably similar with respect to

97

www.manaraa.com

classification accuracy, is less computationally expensive than COMPOSE.V1, SCARGC

(1-NN), and MClassification (but more expensive than FAST COMPOSE, SCARGC (SVM)

and COMPOSE.V2). While not the best performing algorithm either in terms of classifi-

cation accuracy or computational efficiency, LEVELIW has one advantage over other algo-

rithms: greater robustness and stability compared to all of the remaining algorithms with

respect to relatively wide fluctuations of the value of its primary free parameter.

6.1 Summary of Future Work

Further work is needed to generate or acquire more challenging datasets, as most

algorithms perform similarly on the current synthetic benchmark datasets. Currently, there

is a lack of datasets that contain abruptly changing distributions, datasets with recurring

concepts or more severe class imbalances, datasets that have substantial feature or class

noise, datasets with significant amount of outliers, datasets with very little or almost no

shared support, and high dimensional datasets to name a few.

We already know from the analyses shown in this thesis that the algorithms de-

scribed here will not work in all of the above-mentioned scenarios, such as abruptly chang-

ing distributions or severe class imbalance. Often in science, however, it is a challeng-

ing dataset, or a collection of datasets that provide the motivation for the development of

specialized algorithms within a specific disciple. Additionally, future work is needed to

provide machine learning community with an algorithm that can perform well with respect

to classification accuracy, computationally complexity and parameter sensitivity as well as

able to handle challenging datasets mentioned above under initially labeled non-stationary

environments.

98

www.manaraa.com

References

[1] Stephen Grossberg. Nonlinear neural networks: Principles, mechanisms, and archi-
tectures. Neural networks, 1(1):17–61, 1988.

[2] Michael D Muhlbaier and Robi Polikar. Multiple classifiers based incremental learn-
ing algorithm for learning in nonstationary environments. In Machine Learning and
Cybernetics, 2007 International Conference on, volume 6, pages 3618–3623. IEEE,
2007.

[3] Matthew Karnick, Metin Ahiskali, Michael D Muhlbaier, and Robi Polikar. Learning
concept drift in nonstationary environments using an ensemble of classifiers based
approach. In Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Com-
putational Intelligence). IEEE International Joint Conference on, pages 3455–3462.
IEEE, 2008.

[4] R. Elwell and R. Polikar. Incremental learning of concept drift in non- stationary
environments. IEEE Transactions Neural Networks, 22(10):1517–1531, 2011.

[5] Gregory Ditzler and Robi Polikar. Incremental learning of concept drift from stream-
ing imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 25:
2283–2301, 2013.

[6] J. Kolter and M. Maloof. Dynamic weighted majority: An ensemble method for
drifting concepts. Journal of Machine Learning Research, 8:2755–2790, July 2007.

[7] W Nick Street and YongSeog Kim. A streaming ensemble algorithm (sea) for large-
scale classification. ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 377–382, 2001.

[8] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by
weighting the log-likelihood function. Journal of statistical planning and inference,
90(2):227–244, 2000.

[9] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D
Lawrence. Dataset shift in machine learning. The MIT Press, 2009.

[10] Gregory Ditzler and Robi Polikar. Semi-supervised learning in nonstationary envi-
ronments. International Joint Conference on Neural Networks, pages 2741–2748,
2011.

[11] Karl Dyer Robert Capo and Robi Polikar. Active learning in nonstationary environ-
ments. International Joint Conference on Neural Networks, pages 1–8, 2013.

[12] G. Marrs, R. Hickey, and M. Black. The impact of latency on online classication
learning with concept drift. Knowledge Science, Engineering and Management, 6291.

99

www.manaraa.com

[13] Karl B Dyer, Robert Capo, and Robi Polikar. Compose: A semisupervised learning
framework for initially labeled nonstationary streaming data. IEEE Transactions on
Neural Networks and Learning Systems, 25(1):12–26, 2014.

[14] G. Krempl. The algorithm apt to classify in concurrence of latency and drift. Intelli-
gent Data Analysis, pages 223–233, 2011.

[15] V. M. A. Souza, D. F. Silva, J. Gama, and G. E. A. P. A. Batista. Data stream clas-
sication guided by clustering on nonstationary envi- ronments and extreme verication
latency. SIAM International Conference on Data Mining, pages 873–881, 2015.

[16] V. M. A. Souza, D. F. Silva, G. E. A. P. A. Batista, and J. Gama. Classification of
evolving data streams with infinitely delayed labels. IEEE International Conference
on Machine Learning and Applications (ICMLA), pages 214–219, 2015.

[17] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and
hidden contexts. Machine learning, 23(1):69–101, 1996.

[18] Indrė Žliobaitė. Identifying hidden contexts in classification. Advances in Knowledge
Discovery and Data Mining, pages 277–288, 2011.

[19] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data
streams. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 97–106. ACM, 2001.

[20] Lior Cohen, Gil Avrahami-Bakish, Mark Last, Abraham Kandel, and Oscar Kiper-
sztok. Real-time data mining of non-stationary data streams from sensor networks.
Information Fusion, 9(3):344–353, 2008.

[21] Lior Cohen, Gil Avrahami, Mark Last, and Abraham Kandel. Info-fuzzy algorithms
for mining dynamic data streams. Applied Soft Computing, 8(4):1283–1294, 2008.

[22] Robert M French. Catastrophic forgetting in connectionist networks. Encyclopedia
of cognitive science, 2003.

[23] W Nick Street and YongSeog Kim. A streaming ensemble algorithm (sea) for large-
scale classification. In Proceedings of the seventh ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 377–382. ACM, 2001.

[24] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard
Gavaldà. New ensemble methods for evolving data streams. In Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery and data min-
ing, pages 139–148. ACM, 2009.

[25] J Zico Kolter and Marcus A Maloof. Dynamic weighted majority: An ensemble
method for drifting concepts. Journal of Machine Learning Research, 8(Dec):2755–
2790, 2007.

100

www.manaraa.com

[26] Alexey Tsymbal, Mykola Pechenizkiy, Pádraig Cunningham, and Seppo Puuronen.
Dynamic integration of classifiers for handling concept drift. Information fusion, 9
(1):56–68, 2008.

[27] Jing Gao, Wei Fan, and Jiawei Han. On appropriate assumptions to mine data streams:
Analysis and practice. In Data Mining, 2007. ICDM 2007. Seventh IEEE Interna-
tional Conference on, pages 143–152. IEEE, 2007.

[28] Hanady Abdulsalam, David B Skillicorn, and Patrick Martin. Classification using
streaming random forests. IEEE Transactions on Knowledge and Data Engineering,
23(1):22–36, 2011.

[29] Mohammad Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani M Thuraising-
ham. Classification and novel class detection in concept-drifting data streams under
time constraints. IEEE Transactions on Knowledge and Data Engineering, 23(6):
859–874, 2011.

[30] Albert Bifet. Adaptive learning and mining for data streams and frequent patterns.
ACM SIGKDD Explorations Newsletter, 11(1):55–56, 2009.

[31] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa: Massive
online analysis. Journal of Machine Learning Research, 11(May):1601–1604, 2010.

[32] Ryan Elwell and Robi Polikar. Incremental learning in nonstationary environments
with controlled forgetting. In Neural Networks, 2009. IJCNN 2009. International
Joint Conference on, pages 771–778. IEEE, 2009.

[33] Jeffrey C Schlimmer and Richard H Granger. Incremental learning from noisy data.
Machine learning, 1(3):317–354, 1986.

[34] Cesare Alippi and Manuel Roveri. Just-in-time adaptive classifiers.

[35] Cesare Alippi, Giacomo Boracchi, and Manuel Roveri. Change detection tests using
the ici rule. In Neural Networks (IJCNN), The 2010 International Joint Conference
on, pages 1–7. IEEE, 2010.

[36] Stefan Hoeglinger and Russel Pears. Use of hoeffding trees in concept based data
stream mining. In Information and Automation for Sustainability, 2007. ICIAFS 2007.
Third International Conference on, pages 57–62. IEEE, 2007.

[37] Gregory Ditzler and Robi Polikar. Hellinger distance based drift detection for non-
stationary environments. In Computational Intelligence in Dynamic and Uncertain
Environments (CIDUE), 2011 IEEE Symposium on, pages 41–48. IEEE, 2011.

[38] T Ryan Hoens, Nitesh V Chawla, and Robi Polikar. Heuristic updatable weighted
random subspaces for non-stationary environments. In Data Mining (ICDM), 2011
IEEE 11th International Conference on, pages 241–250. IEEE, 2011.

101

www.manaraa.com

[39] Sadaoki Furui. Comparison of speaker recognition methods using statistical features
and dynamic features. IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, 29(3):342–350, 1981.

[40] Guido Dornhege. Toward brain-computer interfacing. MIT press, 2007.

[41] Pradeep Shenoy, Matthias Krauledat, Benjamin Blankertz, Rajesh PN Rao, and
Klaus-Robert Müller. Towards adaptive classification for bci. Journal of neural engi-
neering, 3(1):R13, 2006.

[42] Jing Jiang and ChengXiang Zhai. Instance weighting for domain adaptation in nlp.
In ACL, volume 7, pages 264–271, 2007.

[43] Masashi Sugiyama and Motoaki Kawanabe. Machine learning in non-stationary en-
vironments: Introduction to covariate shift adaptation. MIT press, 2012.

[44] Jing Jiang. A literature survey on domain adaptation of statistical classifiers. URL:
http://sifaka. cs. uiuc. edu/jiang4/domainadaptation/survey, 3, 2008.

[45] Jing Jiang. Domain adaptation in natural language processing. University of Illinois
at Urbana-Champaign, 2008.

[46] Wolfgang Härdle, Marlene Müller, Stefan Sperlich, and Axel Werwatz. Nonparamet-
ric and semiparametric models. Springer Science & Business Media, 2012.

[47] Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative learning under
covariate shift. Journal of Machine Learning Research, 10(Sep):2137–2155, 2009.

[48] Jiayuan Huang, Arthur Gretton, Karsten M Borgwardt, Bernhard Schölkopf, and
Alex J Smola. Correcting sample selection bias by unlabeled data. In Advances
in neural information processing systems, pages 601–608, 2006.

[49] Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic
study. Intelligent data analysis, 6(5):429–449, 2002.

[50] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16:321–357, 2002.

[51] Nuno Moniz, Paula Branco, and Luı́s Torgo. Resampling strategies for imbalanced
time series. In Data Science and Advanced Analytics (DSAA), 2016 IEEE Interna-
tional Conference on, pages 282–291. IEEE, 2016.

[52] Ting Yao, Yingwei Pan, Chong-Wah Ngo, Houqiang Li, and Tao Mei. Semi-
supervised domain adaptation with subspace learning for visual recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2142–2150, 2015.

[53] Wenyuan Dai, Gui-Rong Xue, Qiang Yang, and Yong Yu. Transferring naive bayes
classifiers for text classification. In AAAI, volume 7, pages 540–545, 2007.

102

www.manaraa.com

[54] Shuang Ao, Xiang Li, and Charles X Ling. Fast generalized distillation for semi-
supervised domain adaptation. In AAAI, pages 1719–1725, 2017.

[55] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning do-
mains: A survey. Journal of Machine Learning Research, 10(Jul):1633–1685, 2009.

[56] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345–1359, 2010.

[57] Rich Caruana. Multitask learning. In Learning to learn, pages 95–133. Springer,
1998.

[58] Rajat Raina. Self-taught learning. Stanford University, 2009.

[59] James J Heckman. Sample selection bias as a specification error (with an application
to the estimation of labor supply functions), 1977.

[60] Dyer karl. COMPOSE: Compacted object sample extraction a framework for semi-
supervised learning in nonstationary environments. Rowan University, 2015.

[61] R. Capo, A. Sanchez, and R. Polikar. Core support extraction for learning from
initially labeled nonstationary environments using compose. In 2014 International
Joint Conference on Neural Networks (IJCNN), pages 602–608, July 2014. doi:
10.1109/IJCNN.2014.6889917.

[62] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with
label propagation. Technical Report Technical Report CMU-CALD-02-107, Carnegie
Mellon University, 2002.

[63] Kristin Bennett and Ayhan Demiriz. Semi-supervised support vector machines. Ad-
vances in Neural Information processing systems, pages 368–384, 2002.

[64] Robert Capo, Anthony Sanchez, and Robi Polikar. Core support extraction for learn-
ing from initially labeled nonstationary environments using compose. In Neural Net-
works (IJCNN), 2014 International Joint Conference on, pages 602–608. IEEE, 2014.

[65] J. Sarnelle, A. Sanchez, R. Capo, J. Haas, and R. Polikar. Quantifying the limited
and gradual concept drift assumption. International Joint Conference on Neural Net-
works, 2015.

[66] M. Umer, C. Frederickson, and R. Polikar. Learning under extreme verification la-
tency quickly: Fast compose. In 2016 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 1–8, Dec 2016. doi: 10.1109/SSCI.2016.7849962.

[67] Hirotaka Hachiya, Masashi Sugiyama, and Naonori Ueda. Importance-weighted
least-squares probabilistic classifier for covariate shift adaptation with application to
human activity recognition. Neurocomputing, 80:93–101, 2012.

103

www.manaraa.com

[68] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert MÃžller. Covariate shift
adaptation by importance weighted cross validation. Journal of Machine Learning
Research, 8(May):985–1005, 2007.

[69] Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares approach
to direct importance estimation. Journal of Machine Learning Research, 10(Jul):
1391–1445, 2009.

[70] Judy Hoffman, Trevor Darrell, and Kate Saenko. Continuous manifold based adap-
tation for evolving visual domains. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 867–874, 2014.

104

	Learning extreme verification latency quickly with importance weighting: FAST COMPOSE & LEVEL_IW
	Recommended Citation

	tmp.1503431711.pdf.jwvGy

